The Functor \(K_{0}^{\operatorname {gr}}\) is Full and only Weakly Faithful

Pub Date : 2023-01-25 DOI:10.1007/s10468-023-10199-w
Lia Vaš
{"title":"The Functor \\(K_{0}^{\\operatorname {gr}}\\) is Full and only Weakly Faithful","authors":"Lia Vaš","doi":"10.1007/s10468-023-10199-w","DOIUrl":null,"url":null,"abstract":"<div><p>The Graded Classification Conjecture states that the pointed <span>\\(K_{0}^{\\operatorname {gr}}\\)</span>-group is a complete invariant of the Leavitt path algebras of finite graphs when these algebras are considered with their natural grading by <span>\\(\\mathbb {Z}\\)</span>. The strong version of this conjecture states that the functor <span>\\(K_{0}^{\\operatorname {gr}}\\)</span> is full and faithful when considered on the category of Leavitt path algebras of finite graphs and their graded homomorphisms modulo conjugations by invertible elements of the zero components. We show that the functor <span>\\(K_{0}^{\\operatorname {gr}}\\)</span> is full for the unital Leavitt path algebras of countable graphs and that it is faithful (modulo specified conjugations) only in a certain weaker sense.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10199-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Graded Classification Conjecture states that the pointed \(K_{0}^{\operatorname {gr}}\)-group is a complete invariant of the Leavitt path algebras of finite graphs when these algebras are considered with their natural grading by \(\mathbb {Z}\). The strong version of this conjecture states that the functor \(K_{0}^{\operatorname {gr}}\) is full and faithful when considered on the category of Leavitt path algebras of finite graphs and their graded homomorphisms modulo conjugations by invertible elements of the zero components. We show that the functor \(K_{0}^{\operatorname {gr}}\) is full for the unital Leavitt path algebras of countable graphs and that it is faithful (modulo specified conjugations) only in a certain weaker sense.

分享
查看原文
函数$K_{0}^{\operatorname{gr}}$是满的并且只有弱忠实
分级分类猜想指出,当考虑有限图的 Leavitt 路径代数时,尖的\(K_{0}^{\operatorname {gr}}\)群是有限图的 Leavitt 路径代数的一个完整不变式,其自然分级为\(\mathbb {Z}\)。这个猜想的强版本指出,当考虑有限图的利维特路径代数范畴及其分级同构时,函数(K_{0}^{operatorname {gr}})是完全和忠实的。我们证明了函数(K_{0}^{operatorname {gr}}\)对于可数图的单元 Leavitt 路径代数是完全的,并且它只在某种较弱的意义上是忠实的(模指定共轭)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信