V. Volodina, Nikki Sonenberg, E. Wheatcroft, H. Wynn
{"title":"Majorisation as a theory for uncertainty","authors":"V. Volodina, Nikki Sonenberg, E. Wheatcroft, H. Wynn","doi":"10.1615/int.j.uncertaintyquantification.2022035476","DOIUrl":null,"url":null,"abstract":"Majorisation, also called rearrangement inequalities, yields a type of stochastic ordering in which two or more distributions can be then compared. This method provides a representation of the peakedness of probability distributions and is also independent of the location of probabilities. These properties make majorisation a good candidate as a theory for uncertainty. We demonstrate that this approach is also dimension free by obtaining univariate decreasing rearrangements from multivariate distributions, thus we can consider the ordering of two, or more, distributions with different support. We present operations including inverse mixing and maximise/minimise to combine and analyse uncertainties associated with different distribution functions. We illustrate these methods for empirical examples with applications to scenario analysis and simulations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2022035476","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Majorisation, also called rearrangement inequalities, yields a type of stochastic ordering in which two or more distributions can be then compared. This method provides a representation of the peakedness of probability distributions and is also independent of the location of probabilities. These properties make majorisation a good candidate as a theory for uncertainty. We demonstrate that this approach is also dimension free by obtaining univariate decreasing rearrangements from multivariate distributions, thus we can consider the ordering of two, or more, distributions with different support. We present operations including inverse mixing and maximise/minimise to combine and analyse uncertainties associated with different distribution functions. We illustrate these methods for empirical examples with applications to scenario analysis and simulations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.