V. Volodina, Nikki Sonenberg, E. Wheatcroft, H. Wynn
{"title":"Majorisation as a theory for uncertainty","authors":"V. Volodina, Nikki Sonenberg, E. Wheatcroft, H. Wynn","doi":"10.1615/int.j.uncertaintyquantification.2022035476","DOIUrl":null,"url":null,"abstract":"Majorisation, also called rearrangement inequalities, yields a type of stochastic ordering in which two or more distributions can be then compared. This method provides a representation of the peakedness of probability distributions and is also independent of the location of probabilities. These properties make majorisation a good candidate as a theory for uncertainty. We demonstrate that this approach is also dimension free by obtaining univariate decreasing rearrangements from multivariate distributions, thus we can consider the ordering of two, or more, distributions with different support. We present operations including inverse mixing and maximise/minimise to combine and analyse uncertainties associated with different distribution functions. We illustrate these methods for empirical examples with applications to scenario analysis and simulations.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2022035476","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Majorisation, also called rearrangement inequalities, yields a type of stochastic ordering in which two or more distributions can be then compared. This method provides a representation of the peakedness of probability distributions and is also independent of the location of probabilities. These properties make majorisation a good candidate as a theory for uncertainty. We demonstrate that this approach is also dimension free by obtaining univariate decreasing rearrangements from multivariate distributions, thus we can consider the ordering of two, or more, distributions with different support. We present operations including inverse mixing and maximise/minimise to combine and analyse uncertainties associated with different distribution functions. We illustrate these methods for empirical examples with applications to scenario analysis and simulations.
期刊介绍:
The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.