{"title":"Entanglement of Moving and Non-Moving Two-Level Atoms","authors":"M. K. Ismail, T. El-Shahat","doi":"10.4236/JQIS.2017.74014","DOIUrl":null,"url":null,"abstract":"In this paper we study the dynamics of the atomic inversion, von Neumann entropy and entropy squeezing for moving and non-moving two-level atoms interacting with a Perelomov coherent state. The final state of the system using specific initial conditions is obtained. The effects of Perelomov and detuning parameters are examined in the absence and presence of the atomic motion. Important phenomena such as the collapse and revival are shown to be very sensitive to the variation of the Perelomov parameter in the presence of detuning parameter. The results show that the Perelomov parameter is very useful in generating a high amount of entanglement due to variation of the detuning parameter.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"07 1","pages":"172-184"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"量子信息科学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JQIS.2017.74014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we study the dynamics of the atomic inversion, von Neumann entropy and entropy squeezing for moving and non-moving two-level atoms interacting with a Perelomov coherent state. The final state of the system using specific initial conditions is obtained. The effects of Perelomov and detuning parameters are examined in the absence and presence of the atomic motion. Important phenomena such as the collapse and revival are shown to be very sensitive to the variation of the Perelomov parameter in the presence of detuning parameter. The results show that the Perelomov parameter is very useful in generating a high amount of entanglement due to variation of the detuning parameter.