Preserving asymptotic mean-square stability of stochastic theta scheme for systems of stochastic delay differential equations

IF 1.1 Q2 MATHEMATICS, APPLIED
O. F. Rouz
{"title":"Preserving asymptotic mean-square stability of stochastic theta scheme for systems of stochastic delay differential equations","authors":"O. F. Rouz","doi":"10.22034/CMDE.2020.32139.1502","DOIUrl":null,"url":null,"abstract":"This article examines asymptotic mean-square stability analysis of stochastic linear theta (SLT) scheme for n-dimensional stochastic delay differential equations (SDDEs). We impose some conditions on drift and diffusion terms, which admit that the diffusion coefficient can be highly nonlinear and does not necessarily satisfy a linear growth or global Lipschitz condition. We prove that the proposed scheme is asymptotically mean square stable if the employed stepsize is smaller than a given and easily computable upper bound. In particular, based on our investigation in the case θ ∈[ 1/2 , 1], the stepsize is arbitrary. Eventually, numerical examples are given to demonstrate the effectiveness of our work.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.32139.1502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

This article examines asymptotic mean-square stability analysis of stochastic linear theta (SLT) scheme for n-dimensional stochastic delay differential equations (SDDEs). We impose some conditions on drift and diffusion terms, which admit that the diffusion coefficient can be highly nonlinear and does not necessarily satisfy a linear growth or global Lipschitz condition. We prove that the proposed scheme is asymptotically mean square stable if the employed stepsize is smaller than a given and easily computable upper bound. In particular, based on our investigation in the case θ ∈[ 1/2 , 1], the stepsize is arbitrary. Eventually, numerical examples are given to demonstrate the effectiveness of our work.
随机时滞微分方程组随机θ格式的保渐近均方稳定性
研究了n维随机时滞微分方程随机线性θ(SLT)格式的渐近均方稳定性分析。我们对漂移项和扩散项施加了一些条件,这些条件承认扩散系数可以是高度非线性的,并且不一定满足线性增长或全局Lipschitz条件。我们证明了如果所采用的步长小于给定的且易于计算的上界,则所提出的方案是渐近均方稳定的。特别地,基于我们在θ∈[1/2,1]的情况下的研究,步长是任意的。最后,通过算例验证了本文工作的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信