{"title":"Preserving asymptotic mean-square stability of stochastic theta scheme for systems of stochastic delay differential equations","authors":"O. F. Rouz","doi":"10.22034/CMDE.2020.32139.1502","DOIUrl":null,"url":null,"abstract":"This article examines asymptotic mean-square stability analysis of stochastic linear theta (SLT) scheme for n-dimensional stochastic delay differential equations (SDDEs). We impose some conditions on drift and diffusion terms, which admit that the diffusion coefficient can be highly nonlinear and does not necessarily satisfy a linear growth or global Lipschitz condition. We prove that the proposed scheme is asymptotically mean square stable if the employed stepsize is smaller than a given and easily computable upper bound. In particular, based on our investigation in the case θ ∈[ 1/2 , 1], the stepsize is arbitrary. Eventually, numerical examples are given to demonstrate the effectiveness of our work.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":"8 1","pages":"468-479"},"PeriodicalIF":1.1000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.32139.1502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
This article examines asymptotic mean-square stability analysis of stochastic linear theta (SLT) scheme for n-dimensional stochastic delay differential equations (SDDEs). We impose some conditions on drift and diffusion terms, which admit that the diffusion coefficient can be highly nonlinear and does not necessarily satisfy a linear growth or global Lipschitz condition. We prove that the proposed scheme is asymptotically mean square stable if the employed stepsize is smaller than a given and easily computable upper bound. In particular, based on our investigation in the case θ ∈[ 1/2 , 1], the stepsize is arbitrary. Eventually, numerical examples are given to demonstrate the effectiveness of our work.