On a class of power associative LCC-loops

Q3 Mathematics
O.O. George, J. Olaleru, J. Adeniran, Temitope Gbolahan Jaiyeola
{"title":"On a class of power associative LCC-loops","authors":"O.O. George, J. Olaleru, J. Adeniran, Temitope Gbolahan Jaiyeola","doi":"10.17398/2605-5686.37.2.185","DOIUrl":null,"url":null,"abstract":"Let LWPC denote the identity (xy · x) · xz = x((yx · x)z), and RWPC the mirror identity. Phillips proved that a loop satisfies LWPC and RWPC if and only if it is a WIP PACC loop. Here, it is proved that a loop Q fulfils LWPC if and only if it is a left conjugacy closed (LCC) loop that fulfils the identity (xy · x)x = x(yx · x). Similarly, RWPC is equivalent to RCC and x(x · yx) = (x · xy)x. If a loop satisfies LWPC or RWPC, then it is power associative (PA). The smallest nonassociative LWPC-loop was found to be unique and of order 6 while there are exactly 6 nonassociative LWPC-loops of order 8 up to isomorphism. Methods of construction of nonassociative LWPC-loops were developed.","PeriodicalId":33668,"journal":{"name":"Extracta Mathematicae","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracta Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17398/2605-5686.37.2.185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let LWPC denote the identity (xy · x) · xz = x((yx · x)z), and RWPC the mirror identity. Phillips proved that a loop satisfies LWPC and RWPC if and only if it is a WIP PACC loop. Here, it is proved that a loop Q fulfils LWPC if and only if it is a left conjugacy closed (LCC) loop that fulfils the identity (xy · x)x = x(yx · x). Similarly, RWPC is equivalent to RCC and x(x · yx) = (x · xy)x. If a loop satisfies LWPC or RWPC, then it is power associative (PA). The smallest nonassociative LWPC-loop was found to be unique and of order 6 while there are exactly 6 nonassociative LWPC-loops of order 8 up to isomorphism. Methods of construction of nonassociative LWPC-loops were developed.
关于一类幂相关LCC环路
设LWPC表示恒等式(xy·x)·xz=x((yx·x)z),RWPC表示镜像恒等式。Phillips证明了一个循环满足LWPC和RWPC当且仅当它是WIP PACC循环。本文证明了环Q满足LWPC当且仅当它是满足恒等式(xy·x)x=x(yx·x)的左共轭闭环(LCC)。类似地,RWPC等效于RCC,x(x·yx)=(x·xy)x。如果一个循环满足LWPC或RWPC,则它是幂相关的(PA)。发现最小的非关联LWPC环是唯一的,阶为6,而到同构为止正好有6个阶为8的非关联LWPC环。开发了非关联LWPC回路的构造方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Extracta Mathematicae
Extracta Mathematicae Mathematics-Mathematics (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
6
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信