On monogenity of certain number fields defined by trinomials

IF 0.5 Q3 MATHEMATICS
H. B. Yakkou, L. E. Fadil
{"title":"On monogenity of certain number fields defined by trinomials","authors":"H. B. Yakkou, L. E. Fadil","doi":"10.7169/facm/1987","DOIUrl":null,"url":null,"abstract":"Let K = Q(θ) be a number field generated by a complex root θ of a monic irreducible trinomial F (x) = x + ax + b ∈ Z[x]. There is an extensive literature of monogenity of number fields defined by trinomials, Gaál studied the multi-monogenity of sextic number fields defined by trinomials. Jhorar and Khanduja studied the integral closedness of Z[θ]. But if Z[θ] is not integrally closed, then Jhorar and Khanduja’s results cannot answer on the monogenity of K. In this paper, based on Newton polygon techniques, we deal with the problem of monogenity of K. More precisely, when ZK 6= Z[θ], we give sufficient conditions on n, a and b for K to be not monogenic. For n ∈ {5, 6, 3, 2 · 3, 2 · 3 + 1}, we give explicitly some infinite families of these number fields that are not monogenic. Finally, we illustrate our results by some computational examples.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

Let K = Q(θ) be a number field generated by a complex root θ of a monic irreducible trinomial F (x) = x + ax + b ∈ Z[x]. There is an extensive literature of monogenity of number fields defined by trinomials, Gaál studied the multi-monogenity of sextic number fields defined by trinomials. Jhorar and Khanduja studied the integral closedness of Z[θ]. But if Z[θ] is not integrally closed, then Jhorar and Khanduja’s results cannot answer on the monogenity of K. In this paper, based on Newton polygon techniques, we deal with the problem of monogenity of K. More precisely, when ZK 6= Z[θ], we give sufficient conditions on n, a and b for K to be not monogenic. For n ∈ {5, 6, 3, 2 · 3, 2 · 3 + 1}, we give explicitly some infinite families of these number fields that are not monogenic. Finally, we illustrate our results by some computational examples.
关于三元数定义的某些数域的单胚性
设K=Q(θ)是由单不可约三项F(x)=x+ax+b∈Z[x]的复根θ生成的数域。关于三元数定义的数域的单原性,已有大量文献,Gaál研究了三元数所定义的性数域的多单原性。Jhorar和Khanduja研究了Z[θ]的积分闭性。但如果Z[θ]不是整闭的,则Jhorar和Khanduja的结果不能回答K的单胚性问题。本文基于牛顿多边形技术,讨论了K的单卵性问题。对于n∈{5,6,3,2.3,2.3+1},我们显式给出了这些数域的一些非单基因的无穷大族。最后,我们通过一些计算实例说明了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信