Temperature-Optimized Synthesis of SiO2-Reinforced N-(Alkyl)Acrylamide-Based Semi-IPN Hybrid Gels Functionalized with Methacrylic Acid Units

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Birgül Kalkan, Merve Mocan, Nermin Orakdogen
{"title":"Temperature-Optimized Synthesis of SiO2-Reinforced N-(Alkyl)Acrylamide-Based Semi-IPN Hybrid Gels Functionalized with Methacrylic Acid Units","authors":"Birgül Kalkan,&nbsp;Merve Mocan,&nbsp;Nermin Orakdogen","doi":"10.1002/mren.202300006","DOIUrl":null,"url":null,"abstract":"<p>In order to obtain a pH and temperature sensitive hybrids with a controlled structure, synthesis of N-(alkyl)acrylamide-based semi-interpenetrating polymer network (semi-IPN) reinforced with silica (SiO<sub>2</sub>) nanoparticles and functionalized with methacrylic acid units is carried out by optimizing the polymerization temperature. The study aims to understand the effect of polymerization temperature on the physical properties of semi-IPN hybrids. Changing preparation temperature between −30 and 23 °C leads to significant differences in physico-mechanical results, swelling tendency and adsorption ability, while silica nanoparticles strengthen hybrid walls, preventing their collapse during deswelling and providing rapid response. The hybrids prepared at higher temperatures are found to swell more and faster in water, while the lowest swelling is observed those prepared at 5 °C. The incorporation of SiO<sub>2</sub> particles into copolymer structure via physical crosslinking with network chains enhances the elasticity. The effect of polymerization temperature on adsorption is investigated using methylene blue as a model dye. Increasing polymerization temperature increases the adsorption rate and shortens time to reach the equilibrium point, and adsorption efficiency increases when polymerization temperature is lowered. The results show that semi-IPN hybrids loaded with silica nanoparticles can be used as alternative and potential adsorbents in the treatment of industrial wastes.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202300006","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to obtain a pH and temperature sensitive hybrids with a controlled structure, synthesis of N-(alkyl)acrylamide-based semi-interpenetrating polymer network (semi-IPN) reinforced with silica (SiO2) nanoparticles and functionalized with methacrylic acid units is carried out by optimizing the polymerization temperature. The study aims to understand the effect of polymerization temperature on the physical properties of semi-IPN hybrids. Changing preparation temperature between −30 and 23 °C leads to significant differences in physico-mechanical results, swelling tendency and adsorption ability, while silica nanoparticles strengthen hybrid walls, preventing their collapse during deswelling and providing rapid response. The hybrids prepared at higher temperatures are found to swell more and faster in water, while the lowest swelling is observed those prepared at 5 °C. The incorporation of SiO2 particles into copolymer structure via physical crosslinking with network chains enhances the elasticity. The effect of polymerization temperature on adsorption is investigated using methylene blue as a model dye. Increasing polymerization temperature increases the adsorption rate and shortens time to reach the equilibrium point, and adsorption efficiency increases when polymerization temperature is lowered. The results show that semi-IPN hybrids loaded with silica nanoparticles can be used as alternative and potential adsorbents in the treatment of industrial wastes.

Abstract Image

甲基丙烯酸单元功能化SiO2增强N(烷基)丙烯酰胺基半互穿网络杂化凝胶的温度优化合成
为了获得结构可控的pH和温度敏感杂化物,通过优化聚合温度合成了N-(烷基)丙烯酰胺基二氧化硅纳米粒子增强、甲基丙烯酸单元功能化的半互穿聚合物网络(semi-IPN)。本研究旨在了解聚合温度对半ipn杂化材料物理性能的影响。制备温度在- 30 ~ 23℃之间变化,会导致物理力学结果、溶胀倾向和吸附能力的显著差异,而二氧化硅纳米颗粒增强杂化壁,防止其在溶胀过程中坍塌,并提供快速响应。发现在较高温度下制备的杂化体在水中膨胀更快,而在5°C下制备的杂化体在水中膨胀最小。通过网络链的物理交联将SiO2颗粒掺入共聚物结构中,提高了共聚物的弹性。以亚甲基蓝为模型染料,研究了聚合温度对吸附性能的影响。提高聚合温度可提高吸附速率,缩短达到平衡点的时间,降低聚合温度可提高吸附效率。结果表明,负载二氧化硅纳米颗粒的半ipn杂化物可作为工业废水处理的替代吸附剂和潜在的吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Reaction Engineering
Macromolecular Reaction Engineering 工程技术-高分子科学
CiteScore
2.60
自引率
20.00%
发文量
55
审稿时长
3 months
期刊介绍: Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信