Sulfidation kinetics of titanium and Ti-6Al-4V with elemental sulfur

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Subbarao Raikar, Steven J. DiGregorio, O. Hildreth
{"title":"Sulfidation kinetics of titanium and Ti-6Al-4V with elemental sulfur","authors":"Subbarao Raikar, Steven J. DiGregorio, O. Hildreth","doi":"10.1080/1478422X.2023.2238388","DOIUrl":null,"url":null,"abstract":"ABSTRACT The sulfidation kinetics of titanium and Ti-6Al-4V (Ti64) using elemental sulfur were studied by measuring the amount of metal consumed instead of the change in mass or scale thickness. This metal consumption approach combines the parabolic oxidation law, Arrhenius equation, and Pilling-Bedworth ratio to determine the apparent activation energy and the pre-exponential factor of consumption of Ti64 during sulfidation. The estimations of apparent activation energy and pre-exponential factor were 110.4 kJ·mol−1 and 1.3 × 10−9 m2s−1 for the titanium-sulfur, and 116.2 kJ·mol−1 and 1.2 × 10−9 m2s−1 for the Ti64-sulfur system. Finally, a material removal predictor was developed to predict the amount of Ti64 consumed for a given sulfidation temperature and time.","PeriodicalId":10711,"journal":{"name":"Corrosion Engineering, Science and Technology","volume":"58 1","pages":"561 - 566"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Engineering, Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1478422X.2023.2238388","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The sulfidation kinetics of titanium and Ti-6Al-4V (Ti64) using elemental sulfur were studied by measuring the amount of metal consumed instead of the change in mass or scale thickness. This metal consumption approach combines the parabolic oxidation law, Arrhenius equation, and Pilling-Bedworth ratio to determine the apparent activation energy and the pre-exponential factor of consumption of Ti64 during sulfidation. The estimations of apparent activation energy and pre-exponential factor were 110.4 kJ·mol−1 and 1.3 × 10−9 m2s−1 for the titanium-sulfur, and 116.2 kJ·mol−1 and 1.2 × 10−9 m2s−1 for the Ti64-sulfur system. Finally, a material removal predictor was developed to predict the amount of Ti64 consumed for a given sulfidation temperature and time.
钛和Ti-6Al-4V与元素硫的硫化动力学
摘要通过测量金属消耗量而不是质量或标度厚度的变化,研究了钛和Ti-6Al-4V(Ti64)使用元素硫的硫化动力学。这种金属消耗方法结合了抛物线氧化定律、Arrhenius方程和Pilling-Bedworth比率来确定硫化过程中Ti64的表观活化能和指数前消耗因子。表观活化能和指数前因子分别为110.4 kJ·mol−1和1.3 × 钛硫为10−9 m2s−1,116.2 kJ·mol−1和1.2 × Ti64硫系统为10−9 m2s−1。最后,开发了一个材料去除预测器来预测给定硫化温度和时间下Ti64的消耗量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Corrosion Engineering, Science and Technology
Corrosion Engineering, Science and Technology 工程技术-材料科学:综合
CiteScore
3.20
自引率
5.60%
发文量
58
审稿时长
3.4 months
期刊介绍: Corrosion Engineering, Science and Technology provides broad international coverage of research and practice in corrosion processes and corrosion control. Peer-reviewed contributions address all aspects of corrosion engineering and corrosion science; there is strong emphasis on effective design and materials selection to combat corrosion and the journal carries failure case studies to further knowledge in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信