Automatic detection and delineation of pediatric gliomas on combined [18F]FET PET and MRI.

Claes Nøhr Ladefoged, Otto Mølby Henriksen, René Mathiasen, Kjeld Schmiegelow, Flemming Littrup Andersen, Liselotte Højgaard, Lise Borgwardt, Ian Law, Lisbeth Marner
{"title":"Automatic detection and delineation of pediatric gliomas on combined [<sup>18</sup>F]FET PET and MRI.","authors":"Claes Nøhr Ladefoged, Otto Mølby Henriksen, René Mathiasen, Kjeld Schmiegelow, Flemming Littrup Andersen, Liselotte Højgaard, Lise Borgwardt, Ian Law, Lisbeth Marner","doi":"10.3389/fnume.2022.960820","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Brain and central nervous system (CNS) tumors are the second most common cancer type in children and adolescents. Positron emission tomography (PET) imaging with radiolabeled amino acids visualizes the amino acid uptake in brain tumor cells compared with the healthy brain tissue, which provides additional information over magnetic resonance imaging (MRI) for differential diagnosis, treatment planning, and the differentiation of tumor relapse from treatment-related changes. However, tumor delineation is a time-consuming task subject to inter-rater variability. We propose a deep learning method for the automatic delineation of O-(2-[<sup>18</sup>F]fluoroethyl)-l-tyrosine ([<sup>18</sup>F]FET PET) pediatric CNS tumors.</p><p><strong>Methods: </strong>A total of 109 [<sup>18</sup>F]FET PET and MRI scans from 66 pediatric patients with manually delineated reference were included. We trained an artificial neural network (ANN) for automatic delineation and compared its performance against the manual reference on delineation accuracy and subsequent clinical metric accuracy. For clinical metrics, we extracted the biological tumor volume (BTV) and tumor-to-background mean and max (TBR<sub>mean</sub> and TBR<sub>max</sub>).</p><p><strong>Results: </strong>The ANN produced high tumor overlap (median dice-similarity coefficient [DSC] of 0.93). The clinical metrics extracted with the manual reference and the ANN were highly correlated (<i>r</i> ≥ 0.99). The spatial location of TBR<sub>max</sub> was identical in almost all cases (96%). The ANN and the manual reference produced similar changes in the clinical metrics between baseline and follow-up scans.</p><p><strong>Conclusion: </strong>The proposed ANN achieved high concordance with the manual reference and may be an important tool for decision aid, limiting inter-reader variance and improving longitudinal evaluation in clinical routine, and for future multicenter studies of pediatric CNS tumors.</p>","PeriodicalId":73095,"journal":{"name":"Frontiers in nuclear medicine (Lausanne, Switzerland)","volume":" ","pages":"960820"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440972/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in nuclear medicine (Lausanne, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnume.2022.960820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Brain and central nervous system (CNS) tumors are the second most common cancer type in children and adolescents. Positron emission tomography (PET) imaging with radiolabeled amino acids visualizes the amino acid uptake in brain tumor cells compared with the healthy brain tissue, which provides additional information over magnetic resonance imaging (MRI) for differential diagnosis, treatment planning, and the differentiation of tumor relapse from treatment-related changes. However, tumor delineation is a time-consuming task subject to inter-rater variability. We propose a deep learning method for the automatic delineation of O-(2-[18F]fluoroethyl)-l-tyrosine ([18F]FET PET) pediatric CNS tumors.

Methods: A total of 109 [18F]FET PET and MRI scans from 66 pediatric patients with manually delineated reference were included. We trained an artificial neural network (ANN) for automatic delineation and compared its performance against the manual reference on delineation accuracy and subsequent clinical metric accuracy. For clinical metrics, we extracted the biological tumor volume (BTV) and tumor-to-background mean and max (TBRmean and TBRmax).

Results: The ANN produced high tumor overlap (median dice-similarity coefficient [DSC] of 0.93). The clinical metrics extracted with the manual reference and the ANN were highly correlated (r ≥ 0.99). The spatial location of TBRmax was identical in almost all cases (96%). The ANN and the manual reference produced similar changes in the clinical metrics between baseline and follow-up scans.

Conclusion: The proposed ANN achieved high concordance with the manual reference and may be an important tool for decision aid, limiting inter-reader variance and improving longitudinal evaluation in clinical routine, and for future multicenter studies of pediatric CNS tumors.

[18F]FET PET和MRI联合检测和描绘儿童胶质瘤
脑和中枢神经系统(CNS)肿瘤是儿童和青少年第二常见的癌症类型。与健康脑组织相比,使用放射性标记氨基酸的正电子发射断层扫描(PET)成像可以可视化脑肿瘤细胞中的氨基酸摄取,这为鉴别诊断、治疗计划以及区分肿瘤复发和治疗相关变化提供了比磁共振成像(MRI)更多的信息。然而,肿瘤描绘是一项耗时的任务,受评分者间变异性的影响。我们提出了一种深度学习方法,用于自动描绘O-(2-[18F]氟乙基)-l-酪氨酸([18F]FET-PET)儿童中枢神经系统肿瘤。方法纳入66例儿科患者的109个[18F]FET PET和MRI扫描,并进行手动划定参考。我们训练了一个用于自动描绘的人工神经网络(ANN),并将其在描绘精度和随后的临床测量精度方面的性能与手动参考进行了比较。对于临床指标,我们提取了生物肿瘤体积(BTV)和肿瘤与背景的平均值和最大值(TBRmean和TBRmax)。结果人工神经网络产生了较高的肿瘤重叠(中位数骰子相似系数[DSC]为0.93)。手动参考提取的临床指标与人工神经网络高度相关(r≥0.99)。TBRmax的空间位置几乎所有病例都相同(96%)。ANN和手动参考在基线扫描和随访扫描之间的临床指标上产生了类似的变化。结论所提出的人工神经网络与手册参考文献高度一致,可能是辅助决策、限制读者间差异、改善临床常规纵向评估以及未来儿童中枢神经系统肿瘤多中心研究的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信