The influences of lime and irrigation water on arsenic accumulation of rice, maize and mungbean in the nethouse condition

Q3 Engineering
N. Chuong
{"title":"The influences of lime and irrigation water on arsenic accumulation of rice, maize and mungbean in the nethouse condition","authors":"N. Chuong","doi":"10.21924/cst.6.2.2021.515","DOIUrl":null,"url":null,"abstract":"This research found the great hold of liming, soils and irrigation water on the arsenic (As) accumulation of rice, maize and mung bean in the nethouse research. Two greenhouse experiments had various plant types of rice, maize and mung bean with two soils inside and outside the dyke, two irrigated waters of 0.0 and 200 ?g As/L and three different lime ratios (0, 7.0 and 9.0 tons CaO/ha). The whole treatments were twenty one (12 treatments of experiment 1 and 9 of experiment 2) with 4 repetitions. The results of this study showed that the lime application raised both soil pH and crop yield. The arsenic (As) absorption of plant bodies in stems and seeds inside the dyke increased from 67.8 to 68.3% higher than those outside the dyke, respectively. The arsenic contents of stems and seeds with the treatments of 200 ?g As/L irrigation water were higher from 81.5 to 89.4% than that of non As irrigation water, respectively. The lime supplementation of 7.0 and 9.0 tons CaO per ha reduced the As accumulation of stems and seeds of rice, maize and mung bean was lower than the one without lime supplement from 38.6 (stems) and 54.5 (seeds). Mung bean absorbed the highest As, followed by rice and maize with the lowest As value. However, the lime supplementation of 9.0 tons CaO/ha had so high soil pH of soil that restricted the growth and yield of crops. More different lime concentrations need to search for more new details and new discovery of positive effects of this research.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21924/cst.6.2.2021.515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This research found the great hold of liming, soils and irrigation water on the arsenic (As) accumulation of rice, maize and mung bean in the nethouse research. Two greenhouse experiments had various plant types of rice, maize and mung bean with two soils inside and outside the dyke, two irrigated waters of 0.0 and 200 ?g As/L and three different lime ratios (0, 7.0 and 9.0 tons CaO/ha). The whole treatments were twenty one (12 treatments of experiment 1 and 9 of experiment 2) with 4 repetitions. The results of this study showed that the lime application raised both soil pH and crop yield. The arsenic (As) absorption of plant bodies in stems and seeds inside the dyke increased from 67.8 to 68.3% higher than those outside the dyke, respectively. The arsenic contents of stems and seeds with the treatments of 200 ?g As/L irrigation water were higher from 81.5 to 89.4% than that of non As irrigation water, respectively. The lime supplementation of 7.0 and 9.0 tons CaO per ha reduced the As accumulation of stems and seeds of rice, maize and mung bean was lower than the one without lime supplement from 38.6 (stems) and 54.5 (seeds). Mung bean absorbed the highest As, followed by rice and maize with the lowest As value. However, the lime supplementation of 9.0 tons CaO/ha had so high soil pH of soil that restricted the growth and yield of crops. More different lime concentrations need to search for more new details and new discovery of positive effects of this research.
石灰和灌溉水对水稻、玉米和绿豆地下砷积累的影响
本研究发现石灰、土壤和灌溉水对水稻、玉米和绿豆砷(As)积累的影响很大。两个温室试验采用了不同植物类型的水稻、玉米和绿豆,堤坝内外有两种土壤,两种灌溉水分别为0.0和200?g As/L和三种不同的石灰比(0、7.0和9.0吨CaO/ha)。整个处理为21次(实验1的12次处理和实验2的9次处理),重复4次。研究结果表明,施用石灰可以提高土壤pH值和作物产量。堤内植物体对茎和种子的砷吸收量分别比堤外高67.8%至68.3%。用200?g As/L灌溉水比非As灌溉水分别高81.5%~89.4%。每公顷添加7.0和9.0吨CaO的石灰降低了水稻、玉米和绿豆茎和种子中As的积累量,分别为38.6(茎)和54.5(种子)。绿豆吸收的砷最高,其次是水稻和玉米,砷值最低。然而,9.0吨CaO/ha的石灰补充量使土壤pH值过高,限制了作物的生长和产量。更多不同的石灰浓度需要寻找更多的新细节和这项研究的积极影响的新发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Science and Technology
Communications in Science and Technology Engineering-Engineering (all)
CiteScore
3.20
自引率
0.00%
发文量
13
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信