{"title":"Data-driven subsurface modelling using a Markov random field model","authors":"T. Shuku, K. Phoon","doi":"10.1080/17499518.2023.2181973","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper presents a method of subsurface modelling based on a Markov random field (MRF) model called Potts model. Potts model is an undirected graphical model and has been applied in image processing such as image denoising, restoration and inpainting. The proposed method is simple and requires only a few borehole data on soil types in both training and inference stages. Current implementations of the Potts model require substantial data for training, and they are not suitable for subsurface modelling. The proposed method was demonstrated through numerical examples for 2D and 3D virtual grounds and a real case history. In the numerical examples, the effect of the number of training datasets on the estimation results was also investigated. The proposed method can provide not only the most probable inference of subsurface model but also the spatial distribution of geological uncertainty and is compatible with reliability-based analysis in geotechnical engineering. The spatial distribution of uncertainty is informative in its own right. It directs the engineer to focus on mechanically important zones where the critical failure mechanism passes through if they coincide with the low-accuracy zones.","PeriodicalId":48524,"journal":{"name":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","volume":"17 1","pages":"41 - 63"},"PeriodicalIF":6.5000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17499518.2023.2181973","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 5
Abstract
ABSTRACT This paper presents a method of subsurface modelling based on a Markov random field (MRF) model called Potts model. Potts model is an undirected graphical model and has been applied in image processing such as image denoising, restoration and inpainting. The proposed method is simple and requires only a few borehole data on soil types in both training and inference stages. Current implementations of the Potts model require substantial data for training, and they are not suitable for subsurface modelling. The proposed method was demonstrated through numerical examples for 2D and 3D virtual grounds and a real case history. In the numerical examples, the effect of the number of training datasets on the estimation results was also investigated. The proposed method can provide not only the most probable inference of subsurface model but also the spatial distribution of geological uncertainty and is compatible with reliability-based analysis in geotechnical engineering. The spatial distribution of uncertainty is informative in its own right. It directs the engineer to focus on mechanically important zones where the critical failure mechanism passes through if they coincide with the low-accuracy zones.
期刊介绍:
Georisk covers many diversified but interlinked areas of active research and practice, such as geohazards (earthquakes, landslides, avalanches, rockfalls, tsunamis, etc.), safety of engineered systems (dams, buildings, offshore structures, lifelines, etc.), environmental risk, seismic risk, reliability-based design and code calibration, geostatistics, decision analyses, structural reliability, maintenance and life cycle performance, risk and vulnerability, hazard mapping, loss assessment (economic, social, environmental, etc.), GIS databases, remote sensing, and many other related disciplines. The underlying theme is that uncertainties associated with geomaterials (soils, rocks), geologic processes, and possible subsequent treatments, are usually large and complex and these uncertainties play an indispensable role in the risk assessment and management of engineered and natural systems. Significant theoretical and practical challenges remain on quantifying these uncertainties and developing defensible risk management methodologies that are acceptable to decision makers and stakeholders. Many opportunities to leverage on the rapid advancement in Bayesian analysis, machine learning, artificial intelligence, and other data-driven methods also exist, which can greatly enhance our decision-making abilities. The basic goal of this international peer-reviewed journal is to provide a multi-disciplinary scientific forum for cross fertilization of ideas between interested parties working on various aspects of georisk to advance the state-of-the-art and the state-of-the-practice.