Quality enhancement at higher education institutions by early identifying students at risk using data mining

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY
K. Mahboob, R. Asif, N. G. Haider
{"title":"Quality enhancement at higher education institutions by early identifying students at risk using data mining","authors":"K. Mahboob, R. Asif, N. G. Haider","doi":"10.22581/muet1982.2301.12","DOIUrl":null,"url":null,"abstract":"Accurate prediction of students' academic performance is one of the challenges in maintaining quality standards in any Higher Education Institution (H.E.I.). To ensure the quality of teaching and learning, H.E.I.s often employ Self-Assessment Reports (S.A.R.s) in which identifying a student drop-out ratio is important. Hence, it is essential to identify at-risk students in a given academic program. This article aims to identify at-risk students early by proposing a data mining-based predictive framework to improve the student's learning experience and minimize the dropped-out ratio. The academic sub-attributes or indicators in each course that may affect the performance of students in higher education institutions used in this study to examine students' academic achievement and predict students' performance to distinguish at-risk students are the marks of assignments, mid-term, lab exams, semester marks, total, grade, grade point (G.P.), quality point (Q.P.), grade point average (G.P.A.), and credit hours data of multiple courses categorized according to three knowledge areas defined by Higher Education Commission (H.E.C), Pakistan using data mining predictive techniques. The results indicate that the proposed methods can achieve maximum accuracy in predicting and identifying at-risk students in different courses.","PeriodicalId":44836,"journal":{"name":"Mehran University Research Journal of Engineering and Technology","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mehran University Research Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22581/muet1982.2301.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Accurate prediction of students' academic performance is one of the challenges in maintaining quality standards in any Higher Education Institution (H.E.I.). To ensure the quality of teaching and learning, H.E.I.s often employ Self-Assessment Reports (S.A.R.s) in which identifying a student drop-out ratio is important. Hence, it is essential to identify at-risk students in a given academic program. This article aims to identify at-risk students early by proposing a data mining-based predictive framework to improve the student's learning experience and minimize the dropped-out ratio. The academic sub-attributes or indicators in each course that may affect the performance of students in higher education institutions used in this study to examine students' academic achievement and predict students' performance to distinguish at-risk students are the marks of assignments, mid-term, lab exams, semester marks, total, grade, grade point (G.P.), quality point (Q.P.), grade point average (G.P.A.), and credit hours data of multiple courses categorized according to three knowledge areas defined by Higher Education Commission (H.E.C), Pakistan using data mining predictive techniques. The results indicate that the proposed methods can achieve maximum accuracy in predicting and identifying at-risk students in different courses.
通过使用数据挖掘早期识别有风险的学生,提高高等教育机构的质量
准确预测学生的学习成绩是任何高等教育机构(H.E.I.)保持质量标准的挑战之一。为了确保教学质量,H.E.I.通常采用自我评估报告(s.A.R.s),其中确定学生辍学率很重要。因此,在特定的学术项目中识别有风险的学生是至关重要的。本文旨在通过提出一个基于数据挖掘的预测框架来早期识别有风险的学生,以改善学生的学习体验并最大限度地降低辍学率。本研究中使用的每门课程中可能影响高等教育机构学生表现的学业子属性或指标是作业分数、期中考试、实验室考试、学期分数、总分、年级、绩点,平均绩点(G.P.A.)和根据巴基斯坦高等教育委员会(H.E.C)定义的三个知识领域分类的多个课程的学时数据。结果表明,所提出的方法可以在预测和识别不同课程中的高危学生方面达到最大的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
76
审稿时长
40 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信