Determination of Source Terms in Diffusion and Wave Equations by Observations After Incidents: Uniqueness and Stability

IF 1.2 Q2 MATHEMATICS, APPLIED
Jin Cheng, Shuai Lu, Masahiro Yamamoto
{"title":"Determination of Source Terms in Diffusion and Wave Equations by Observations After Incidents: Uniqueness and Stability","authors":"Jin Cheng, Shuai Lu, Masahiro Yamamoto","doi":"10.4208/csiam-am.so-2022-0028","DOIUrl":null,"url":null,"abstract":"We consider a diffusion and a wave equations: $$ \\partial_t^ku(x,t) = \\Delta u(x,t) + \\mu(t)f(x), \\quad x\\in \\Omega, \\, t>0, \\quad k=1,2 $$ with the zero initial and boundary conditions, where $\\Omega \\subset \\mathbb{R}^d$ is a bounded domain. We establish uniqueness and/or stability results for inverse problems of 1. determining $\\mu(t)$, $0<t<T$ with given $f(x)$; 2. determining $f(x)$, $x\\in \\Omega$ with given $\\mu(t)$ \\end{itemize} by data of $u$: $u(x_0,\\cdot)$ with fixed point $x_0\\in \\Omega$ or Neumann data on subboundary over time interval. In our inverse problems, data are taken over time interval $T_1<t<T_1$, by assuming that $T<T_1<T_2$ and $\\mu(t)=0$ for $t\\ge T$, which means that the source stops to be active after the time $T$ and the observations are started only after $T$. This assumption is practical by such a posteriori data after incidents, although inverse problems had been well studied in the case of $T=0$. We establish the non-uniqueness, the uniqueness and conditional stability for a diffusion and a wave equations. The proofs are based on eigenfunction expansions of the solutions $u(x,t)$, and we rely on various knowledge of the generalized Weierstrass theorem on polynomial approximation, almost periodic functions, Carleman estimate, non-harmonic Fourier series.","PeriodicalId":29749,"journal":{"name":"CSIAM Transactions on Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSIAM Transactions on Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/csiam-am.so-2022-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

We consider a diffusion and a wave equations: $$ \partial_t^ku(x,t) = \Delta u(x,t) + \mu(t)f(x), \quad x\in \Omega, \, t>0, \quad k=1,2 $$ with the zero initial and boundary conditions, where $\Omega \subset \mathbb{R}^d$ is a bounded domain. We establish uniqueness and/or stability results for inverse problems of 1. determining $\mu(t)$, $0
通过事故后观测确定扩散方程和波动方程中的源项:唯一性和稳定性
我们考虑具有零初始和边界条件的扩散和波动方程:$$\partial_t^ku(x,t)=\Delta u(x,t)+\mu(t)f(x),\quad x\in\Omega,\,t>0,\ quad k=1,2$$,其中$\Omega\subet\mathbb{R}^d$是有界域。我们建立了1的反问题的唯一性和/或稳定性结果。用给定的$f(x)$确定$\mu(t)$,$0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信