Effects of nanobubble in subsurface drip irrigation on the yield, quality, irrigation water use efficiency and nitrogen partial productivity of watermelon and muskmelon
Jing He, Yanzheng Liu, Tianze Wang, Weijie Chen, Bin Liu, Yunpeng Zhou, Yunkai Li
{"title":"Effects of nanobubble in subsurface drip irrigation on the yield, quality, irrigation water use efficiency and nitrogen partial productivity of watermelon and muskmelon","authors":"Jing He, Yanzheng Liu, Tianze Wang, Weijie Chen, Bin Liu, Yunpeng Zhou, Yunkai Li","doi":"10.31545/intagr/150413","DOIUrl":null,"url":null,"abstract":". Improving crop yield and quality, as well as water and fertilizer use efficiency in a synergetic manner is a substan tial challenge. It involves limits to the sustainable development of protected agriculture. Here, we propose a new irrigation method using nanobubble water through subsurface drip irrigation to improve the agricultural performance of crops. Experiments were conducted to evaluate the effects of nanobubble water on growth, yield, quality, irrigation water use efficiency, and the nitrogen partial productivity of greenhouse watermelon and muskmelon. The results showed that in nanobubble water conditions, reducing the amount of irrigation or fertilization by 20% had no negative impacts on the tested crops, instead there were increases in the yield, quality, irrigation water use efficiency and nitrogen partial productivity of the two crops. When irrigation and fertilization were both decreased by 20%, the irrigation water use efficiency was improved by 82.6 and 70.2%, the nitrogen partial productiv ity increased by 68.9 and 30.4%, vitamin C increased by 50.1 and 66.7% which was significant. This may be because nanobubble water reduced the redundant growth of crops, and promoted the bal ance between individual development and production. Moreover, nanobubble water finally achieved increased economic benefits by reducing the input of irrigation and fertilization. Therefore, we suggest that 80% irrigation and 80% fertilization with nanobubble water could be adopted for Cucurbitaceae in greenhouse condi tions. This method also has reference significance for reducing agricultural water input.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Agrophysics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.31545/intagr/150413","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 2
Abstract
. Improving crop yield and quality, as well as water and fertilizer use efficiency in a synergetic manner is a substan tial challenge. It involves limits to the sustainable development of protected agriculture. Here, we propose a new irrigation method using nanobubble water through subsurface drip irrigation to improve the agricultural performance of crops. Experiments were conducted to evaluate the effects of nanobubble water on growth, yield, quality, irrigation water use efficiency, and the nitrogen partial productivity of greenhouse watermelon and muskmelon. The results showed that in nanobubble water conditions, reducing the amount of irrigation or fertilization by 20% had no negative impacts on the tested crops, instead there were increases in the yield, quality, irrigation water use efficiency and nitrogen partial productivity of the two crops. When irrigation and fertilization were both decreased by 20%, the irrigation water use efficiency was improved by 82.6 and 70.2%, the nitrogen partial productiv ity increased by 68.9 and 30.4%, vitamin C increased by 50.1 and 66.7% which was significant. This may be because nanobubble water reduced the redundant growth of crops, and promoted the bal ance between individual development and production. Moreover, nanobubble water finally achieved increased economic benefits by reducing the input of irrigation and fertilization. Therefore, we suggest that 80% irrigation and 80% fertilization with nanobubble water could be adopted for Cucurbitaceae in greenhouse condi tions. This method also has reference significance for reducing agricultural water input.
期刊介绍:
The journal is focused on the soil-plant-atmosphere system. The journal publishes original research and review papers on any subject regarding soil, plant and atmosphere and the interface in between. Manuscripts on postharvest processing and quality of crops are also welcomed.
Particularly the journal is focused on the following areas:
implications of agricultural land use, soil management and climate change on production of biomass and renewable energy, soil structure, cycling of carbon, water, heat and nutrients, biota, greenhouse gases and environment,
soil-plant-atmosphere continuum and ways of its regulation to increase efficiency of water, energy and chemicals in agriculture,
postharvest management and processing of agricultural and horticultural products in relation to food quality and safety,
mathematical modeling of physical processes affecting environment quality, plant production and postharvest processing,
advances in sensors and communication devices to measure and collect information about physical conditions in agricultural and natural environments.
Papers accepted in the International Agrophysics should reveal substantial novelty and include thoughtful physical, biological and chemical interpretation and accurate description of the methods used.
All manuscripts are initially checked on topic suitability and linguistic quality.