Modified Residual Property Model For Fracture Mechanics

IF 0.6 4区 工程技术 Q4 MECHANICS
Mechanika Pub Date : 2023-04-19 DOI:10.5755/j02.mech.31339
Goksel Saracoglu
{"title":"Modified Residual Property Model For Fracture Mechanics","authors":"Goksel Saracoglu","doi":"10.5755/j02.mech.31339","DOIUrl":null,"url":null,"abstract":"In this paper, the application requirement of the Residual Property Model based on the decrescent exponential function is reduced to only one mechanical test data. For this, by using Creager and Paris's elastic stress field equation in front of the blunt elliptical hole, the theoretical radius was chosen for the tip curvative and the maximum stress in the load direction at the tip is ensured to be equal the fracture toughness. Thus, the workload of the model is reduced by making the u exponent in the e-u function dependent on the geometric correction factor and the crack length. It was applied to the laminated composite specimens with three-point bending and the specimens including circular hole, and critical fracture stress values close to actual values were achieved.","PeriodicalId":54741,"journal":{"name":"Mechanika","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.mech.31339","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the application requirement of the Residual Property Model based on the decrescent exponential function is reduced to only one mechanical test data. For this, by using Creager and Paris's elastic stress field equation in front of the blunt elliptical hole, the theoretical radius was chosen for the tip curvative and the maximum stress in the load direction at the tip is ensured to be equal the fracture toughness. Thus, the workload of the model is reduced by making the u exponent in the e-u function dependent on the geometric correction factor and the crack length. It was applied to the laminated composite specimens with three-point bending and the specimens including circular hole, and critical fracture stress values close to actual values were achieved.
改进的断裂力学残余特性模型
本文将基于递减指数函数的剩余性能模型的应用需求简化为只有一个力学试验数据。为此,通过在钝椭圆孔前使用Creager和Paris的弹性应力场方程,选择了尖端弯曲的理论半径,并确保尖端载荷方向上的最大应力等于断裂韧性。因此,通过使e-u函数中的u指数取决于几何校正因子和裂纹长度,减少了模型的工作量。将其应用于具有三点弯曲的层合复合材料试件和包括圆孔的试件,获得了接近实际值的临界断裂应力值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanika
Mechanika 物理-力学
CiteScore
1.30
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: The journal is publishing scientific papers dealing with the following problems: Mechanics of Solid Bodies; Mechanics of Fluids and Gases; Dynamics of Mechanical Systems; Design and Optimization of Mechanical Systems; Mechanical Technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信