Document similarity for error prediction

IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Péter Marjai, P. Lehotay-Kéry, A. Kiss
{"title":"Document similarity for error prediction","authors":"Péter Marjai, P. Lehotay-Kéry, A. Kiss","doi":"10.1080/24751839.2021.1893496","DOIUrl":null,"url":null,"abstract":"ABSTRACT In today's rushing world, there's an ever-increasing usage of networking equipment. These devices log their operations; however, there could be errors that result in the restart of the given device. There could be different patterns before different errors. Our main goal is to predict the upcoming error based on the log lines of the actual file. To achieve this, we use document similarity. One of the key concepts of information retrieval is document similarity which is an indicator of how analogous (or different) documents are. In this paper, we are studying the effectiveness of prediction based on cosine similarity, Jaccard similarity, and Euclidean distance of rows before restarts. We use different features like TFIDF, Doc2Vec, LSH, and others in conjunction with these distance measures. Since networking devices produce lots of log files, we use Spark for Big data computing.","PeriodicalId":32180,"journal":{"name":"Journal of Information and Telecommunication","volume":"5 1","pages":"407 - 420"},"PeriodicalIF":2.7000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24751839.2021.1893496","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24751839.2021.1893496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

Abstract

ABSTRACT In today's rushing world, there's an ever-increasing usage of networking equipment. These devices log their operations; however, there could be errors that result in the restart of the given device. There could be different patterns before different errors. Our main goal is to predict the upcoming error based on the log lines of the actual file. To achieve this, we use document similarity. One of the key concepts of information retrieval is document similarity which is an indicator of how analogous (or different) documents are. In this paper, we are studying the effectiveness of prediction based on cosine similarity, Jaccard similarity, and Euclidean distance of rows before restarts. We use different features like TFIDF, Doc2Vec, LSH, and others in conjunction with these distance measures. Since networking devices produce lots of log files, we use Spark for Big data computing.
用于错误预测的文档相似性
摘要在当今飞速发展的世界里,网络设备的使用越来越多。这些设备记录其操作;但是,可能存在导致给定设备重新启动的错误。在出现不同的错误之前可能会有不同的模式。我们的主要目标是根据实际文件的日志行来预测即将发生的错误。为了实现这一点,我们使用文档相似性。信息检索的关键概念之一是文档相似性,它是文档相似程度(或不同程度)的指标。在本文中,我们正在研究基于余弦相似性、Jaccard相似性和重新启动前行的欧几里得距离的预测的有效性。我们将TFIDF、Doc2Verc、LSH等不同功能与这些距离测量结合使用。由于网络设备会产生大量的日志文件,我们使用Spark进行大数据计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
18
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信