A novel approach for computation of cosine function

Q4 Engineering
A. Hasnat, D. Bhattacharjee, A. Hoque, Santanu Halder
{"title":"A novel approach for computation of cosine function","authors":"A. Hasnat, D. Bhattacharjee, A. Hoque, Santanu Halder","doi":"10.1504/ijnp.2019.10025863","DOIUrl":null,"url":null,"abstract":"Objective of trigonometric function approximation in digital systems are faster computation in less number of clock cycles, optimising hardware resources, accuracy in more number of bits, etc. This study proposes a novel method for cosine function computation and respective FPGA-based architecture. A triangle is presumably located in the first quadrant of a circle with unit radius whose one vertex is the centre, other two vertices touches the perimeter. Using the area of the triangle, it is observed that the y coordinate of the third vertex of the triangle is the sine value. The error is the difference between arch length and side length. Newton's interpolation method is used to formulate the error approximation function. This method is synthesised on Xilinx Spartan 3 xc3s200-5ft256 FPGA kit. The proposed method gives accuracy up to 14 bits or more in 96% cases in 11 clock cycles only at maximum speed of 89.977 MHz.","PeriodicalId":14016,"journal":{"name":"International Journal of Nanoparticles","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanoparticles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijnp.2019.10025863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Objective of trigonometric function approximation in digital systems are faster computation in less number of clock cycles, optimising hardware resources, accuracy in more number of bits, etc. This study proposes a novel method for cosine function computation and respective FPGA-based architecture. A triangle is presumably located in the first quadrant of a circle with unit radius whose one vertex is the centre, other two vertices touches the perimeter. Using the area of the triangle, it is observed that the y coordinate of the third vertex of the triangle is the sine value. The error is the difference between arch length and side length. Newton's interpolation method is used to formulate the error approximation function. This method is synthesised on Xilinx Spartan 3 xc3s200-5ft256 FPGA kit. The proposed method gives accuracy up to 14 bits or more in 96% cases in 11 clock cycles only at maximum speed of 89.977 MHz.
一种计算余弦函数的新方法
数字系统中三角函数逼近的目标是在更少的时钟周期内更快地计算,优化硬件资源,在更多的比特数内准确度等。本研究提出了一种新的余弦函数计算方法和相应的基于FPGA的体系结构。三角形大概位于单位半径圆的第一象限,其中一个顶点为中心,其他两个顶点接触周长。使用三角形的面积,可以观察到三角形第三个顶点的y坐标是正弦值。误差是拱长度和边长之间的差值。采用牛顿插值法建立误差近似函数。该方法是在Xilinx Spartan 3 xc3s200-5ft256 FPGA套件上合成的。仅在89.977MHz的最大速度下,所提出的方法在11个时钟周期内的96%的情况下提供高达14位或更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Nanoparticles
International Journal of Nanoparticles Engineering-Mechanical Engineering
CiteScore
1.60
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信