M. Karthick, Dinesh Jackson Samuel, B. Prakash, P. Sathyaprakash, Nandhini Daruvuri, M. Ali, R.S. Aiswarya
{"title":"Real-time MRI lungs images revealing using Hybrid feedforward Deep Neural Network and Convolutional Neural Network","authors":"M. Karthick, Dinesh Jackson Samuel, B. Prakash, P. Sathyaprakash, Nandhini Daruvuri, M. Ali, R.S. Aiswarya","doi":"10.3233/ida-237436","DOIUrl":null,"url":null,"abstract":"This research focused on Real-time MRI lung images that were revealed using three grade processes by manipulating nanophotonics components, mapping by deep learning, machine learning, and pattern recognition. This research is Solving Magnetic resonance imaging of interstitial lung diseases with Hybrid feedforward Deep Neural Network (ffDNN) and Convolutional Neural Network (CNN) architecture. The feedforward deep neural network (ffDNN) and Convolutional Neural Network (CNN) techniques are used to Solving Magnetic resonance imaging of interstitial lung diseases on the nanophotonics components, deep learning, and machine learning Platform. The Proposed semiconductor monolithic integration approach employed for bio-Magnetic resonance imaging characterization using photonic crystal “Symptomatic Image Revealing” details of the resonant monolithic. The proposed machine-learning-based approach revealed characterizing multi-parameter design space of nanophotonic components using Nano-optic imagers. The Pattern Recognition for MRI was performed for lower dimensionality. Finally, the Hybrid feedforward Deep Neural Network (ffDNN) and Convolutional Neural Network (CNN) architecture for calculating the height and size of scatterers using the inverse design of the meta-optical structure. The temporal resolution assessment of image data pixel size 280x360 hyperspectral imaging temporal resolution is 25, and magnetic resonance imaging temporal resolution is 50. The Image distribution shows that phase shift and transmission are 2.78 degrees and at 95%. The result for the inverse design using CNN returns the efficient inverse design of test data that can be designed according to the required pressure distribution. Wavelength 1000 nanometer to 1600 machine learning method absorbance 40% and ffDNN absorbance 33%.","PeriodicalId":50355,"journal":{"name":"Intelligent Data Analysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Data Analysis","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ida-237436","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This research focused on Real-time MRI lung images that were revealed using three grade processes by manipulating nanophotonics components, mapping by deep learning, machine learning, and pattern recognition. This research is Solving Magnetic resonance imaging of interstitial lung diseases with Hybrid feedforward Deep Neural Network (ffDNN) and Convolutional Neural Network (CNN) architecture. The feedforward deep neural network (ffDNN) and Convolutional Neural Network (CNN) techniques are used to Solving Magnetic resonance imaging of interstitial lung diseases on the nanophotonics components, deep learning, and machine learning Platform. The Proposed semiconductor monolithic integration approach employed for bio-Magnetic resonance imaging characterization using photonic crystal “Symptomatic Image Revealing” details of the resonant monolithic. The proposed machine-learning-based approach revealed characterizing multi-parameter design space of nanophotonic components using Nano-optic imagers. The Pattern Recognition for MRI was performed for lower dimensionality. Finally, the Hybrid feedforward Deep Neural Network (ffDNN) and Convolutional Neural Network (CNN) architecture for calculating the height and size of scatterers using the inverse design of the meta-optical structure. The temporal resolution assessment of image data pixel size 280x360 hyperspectral imaging temporal resolution is 25, and magnetic resonance imaging temporal resolution is 50. The Image distribution shows that phase shift and transmission are 2.78 degrees and at 95%. The result for the inverse design using CNN returns the efficient inverse design of test data that can be designed according to the required pressure distribution. Wavelength 1000 nanometer to 1600 machine learning method absorbance 40% and ffDNN absorbance 33%.
期刊介绍:
Intelligent Data Analysis provides a forum for the examination of issues related to the research and applications of Artificial Intelligence techniques in data analysis across a variety of disciplines. These techniques include (but are not limited to): all areas of data visualization, data pre-processing (fusion, editing, transformation, filtering, sampling), data engineering, database mining techniques, tools and applications, use of domain knowledge in data analysis, big data applications, evolutionary algorithms, machine learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge filtering, and post-processing. In particular, papers are preferred that discuss development of new AI related data analysis architectures, methodologies, and techniques and their applications to various domains.