Investigation of a Mild Solution to Coupled Systems of Impulsive Hybrid Fractional Differential Equations

IF 1.4 Q2 MATHEMATICS, APPLIED
M. Hannabou, Hilal Khalid
{"title":"Investigation of a Mild Solution to Coupled Systems of Impulsive Hybrid Fractional Differential Equations","authors":"M. Hannabou, Hilal Khalid","doi":"10.1155/2019/2618982","DOIUrl":null,"url":null,"abstract":"The study of coupled systems of hybrid fractional differential equations requires the attention of scientists for the exploration of their different important aspects. Our aim in this paper is to study the existence and uniqueness of the solution for impulsive hybrid fractional differential equations. The novelty of this work is the study of a coupled system of impulsive hybrid fractional differential equations with initial and boundary hybrid conditions. We used the classical fixed-point theorems such as the Banach fixed-point theorem and Leray–Schauder alternative fixed-point theorem for existence results. We also give an example of the main results.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/2618982","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/2618982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

The study of coupled systems of hybrid fractional differential equations requires the attention of scientists for the exploration of their different important aspects. Our aim in this paper is to study the existence and uniqueness of the solution for impulsive hybrid fractional differential equations. The novelty of this work is the study of a coupled system of impulsive hybrid fractional differential equations with initial and boundary hybrid conditions. We used the classical fixed-point theorems such as the Banach fixed-point theorem and Leray–Schauder alternative fixed-point theorem for existence results. We also give an example of the main results.
脉冲混合分数阶微分方程耦合系统的一个温和解的研究
混合分式微分方程耦合系统的研究需要科学家们的关注,以探索它们不同的重要方面。本文的目的是研究脉冲混合分数阶微分方程解的存在性和唯一性。这项工作的新颖之处在于研究了一个具有初始和边界混合条件的脉冲混合分数阶微分方程的耦合系统。我们使用经典的不动点定理,如Banach不动点定理和Leray–Schauder替代不动点定理来获得存在性结果。我们还举了一个主要结果的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信