Application of AI Face Recognition Technology in Swipe Card Attendance Systems for Hospitals

Te-Kwei Wang, Yu-Hsun Lin, Kai-Ping Li
{"title":"Application of AI Face Recognition Technology in Swipe Card Attendance Systems for Hospitals","authors":"Te-Kwei Wang, Yu-Hsun Lin, Kai-Ping Li","doi":"10.46604/peti.2022.8984","DOIUrl":null,"url":null,"abstract":"Traditional swipe card attendance systems for hospitals cannot effectively protect employees’ personal information and ensure that the employees are swiping their own cards. To solve the problem, the present study proposes a novel hospital swipe card attendance system using an artificial intelligence (AI) face modeling system with an open-source face database. The proposed system employs a multi-task cascaded convolutional network (MTCNN) algorithm and FaceNet to improve the performance of face recognition. The system can compare the face of the one who swipes a card with the faces of cardholders in the database, thereby preventing the one from clocking in on behalf of others. The results show that the application of AI technology in the hospital swipe card attendance system can realize the promise of protecting employees’ personal information and verifying employees’ identities.","PeriodicalId":33402,"journal":{"name":"Proceedings of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/peti.2022.8984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional swipe card attendance systems for hospitals cannot effectively protect employees’ personal information and ensure that the employees are swiping their own cards. To solve the problem, the present study proposes a novel hospital swipe card attendance system using an artificial intelligence (AI) face modeling system with an open-source face database. The proposed system employs a multi-task cascaded convolutional network (MTCNN) algorithm and FaceNet to improve the performance of face recognition. The system can compare the face of the one who swipes a card with the faces of cardholders in the database, thereby preventing the one from clocking in on behalf of others. The results show that the application of AI technology in the hospital swipe card attendance system can realize the promise of protecting employees’ personal information and verifying employees’ identities.
人工智能人脸识别技术在医院刷卡考勤系统中的应用
传统的医院刷卡考勤系统不能有效地保护员工的个人信息,不能保证员工自己刷卡。为了解决这个问题,本研究提出了一种新的医院刷卡考勤系统,该系统使用人工智能(AI)人脸建模系统和开源人脸数据库。该系统采用多任务级联卷积网络(MTNN)算法和FaceNet来提高人脸识别性能。该系统可以将刷卡者的面部与数据库中持卡人的面部进行比较,从而防止该人代表他人打卡。结果表明,将人工智能技术应用于医院刷卡考勤系统,可以实现保护员工个人信息和验证员工身份的承诺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
12
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信