On sufficient conditions for spanning structures in dense graphs

IF 1.5 1区 数学 Q1 MATHEMATICS
R. Lang, Nicolás Sanhueza-Matamala
{"title":"On sufficient conditions for spanning structures in dense graphs","authors":"R. Lang, Nicolás Sanhueza-Matamala","doi":"10.1112/plms.12552","DOIUrl":null,"url":null,"abstract":"We study structural conditions in dense graphs that guarantee the existence of vertex‐spanning substructures such as Hamilton cycles. It is easy to see that every Hamiltonian graph is connected, has a perfect fractional matching and, excluding the bipartite case, contains an odd cycle. A simple consequence of the Robust Expander Theorem of Kühn, Osthus and Treglown tells us that any large enough graph that robustly satisfies these properties must already be Hamiltonian. Our main result generalises this phenomenon to powers of cycles and graphs of sublinear bandwidth subject to natural generalisations of connectivity, matchings and odd cycles. This answers a question of Ebsen, Maesaka, Reiher, Schacht and Schülke and solves the embedding problem that underlies multiple lines of research on sufficient conditions for spanning structures in dense graphs. As applications, we recover and establish Bandwidth Theorems in a variety of settings including Ore‐type degree conditions, Pósa‐type degree conditions, deficiency‐type conditions, locally dense and inseparable graphs, multipartite graphs as well as robust expanders.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12552","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We study structural conditions in dense graphs that guarantee the existence of vertex‐spanning substructures such as Hamilton cycles. It is easy to see that every Hamiltonian graph is connected, has a perfect fractional matching and, excluding the bipartite case, contains an odd cycle. A simple consequence of the Robust Expander Theorem of Kühn, Osthus and Treglown tells us that any large enough graph that robustly satisfies these properties must already be Hamiltonian. Our main result generalises this phenomenon to powers of cycles and graphs of sublinear bandwidth subject to natural generalisations of connectivity, matchings and odd cycles. This answers a question of Ebsen, Maesaka, Reiher, Schacht and Schülke and solves the embedding problem that underlies multiple lines of research on sufficient conditions for spanning structures in dense graphs. As applications, we recover and establish Bandwidth Theorems in a variety of settings including Ore‐type degree conditions, Pósa‐type degree conditions, deficiency‐type conditions, locally dense and inseparable graphs, multipartite graphs as well as robust expanders.
关于稠密图中生成结构的充分条件
我们研究了稠密图中的结构条件,这些条件保证了诸如Hamilton环之类的顶点跨越子结构的存在。很容易看出,每个哈密顿图都是连通的,都有一个完美的分数匹配,并且,不包括二分情况,都包含一个奇循环。Kühn,Osthus和Tregloon的鲁棒展开定理的一个简单结果告诉我们,任何足够大的图,鲁棒地满足这些性质,都必须已经是哈密尔顿的。我们的主要结果将这种现象推广到循环的幂和次线性带宽的图,服从连通性、匹配和奇循环的自然推广。这回答了Ebsen、Maesaka、Reiher、Schacht和Schülke的一个问题,并解决了密集图中生成结构的充分条件的多条研究线的嵌入问题。作为应用,我们在各种设置中恢复和建立带宽定理,包括Ore型度条件、Pósa型度条件和亏型条件、局部稠密和不可分图、多部分图以及鲁棒扩展器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信