ON GRADED 2-ABSORBING COPRIMARY SUBMODULES

IF 0.4 Q4 MATHEMATICS
M. Bataineh, R. Abu-Dawwas
{"title":"ON GRADED 2-ABSORBING COPRIMARY SUBMODULES","authors":"M. Bataineh, R. Abu-Dawwas","doi":"10.35834/2022/3402174","DOIUrl":null,"url":null,"abstract":"The aim of this article is to introduce the concept of graded 2absorbing coprimary submodules as a generalization of graded strongly 2-absorbing second submodules, and explore some properties of this class. A non-zero graded R-submodule N of a graded R-moduleM is called a graded 2-absorbing coprimary R-submodule if whenever x, y are homogeneous elements of R and K is a graded R-submodule of M such that xyN ⊆ K, then either x or y is in the graded radical of (K :R N) or xy ∈ AnnR(N). Several results have been achieved.","PeriodicalId":42784,"journal":{"name":"Missouri Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Missouri Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35834/2022/3402174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this article is to introduce the concept of graded 2absorbing coprimary submodules as a generalization of graded strongly 2-absorbing second submodules, and explore some properties of this class. A non-zero graded R-submodule N of a graded R-moduleM is called a graded 2-absorbing coprimary R-submodule if whenever x, y are homogeneous elements of R and K is a graded R-submodule of M such that xyN ⊆ K, then either x or y is in the graded radical of (K :R N) or xy ∈ AnnR(N). Several results have been achieved.
关于分级2-吸收共初级模
本文的目的是引入分次强2-吸收共主子模的概念,作为分次强-2-吸收第二子模的推广,并探讨这一类的一些性质。分次R-模M的一个非零分次R-子模N称为分次2-吸收共主R-子模,如果当x,y是R的齐次元素,并且K是M的分次R-子模,使得xyN⊆K,则x或y在(K:RN)或xy∈AnnR(N)的分次根中。已经取得了一些成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
9
期刊介绍: Missouri Journal of Mathematical Sciences (MJMS) publishes well-motivated original research articles as well as expository and survey articles of exceptional quality in mathematical sciences. A section of the MJMS is also devoted to interesting mathematical problems and solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信