Liron Zada, Bart Fokker, Heather A. Leslie, A. Dick Vethaak, Johannes F. de Boer, Freek Ariese
{"title":"Stimulated Raman scattering simulation for imaging optimization","authors":"Liron Zada, Bart Fokker, Heather A. Leslie, A. Dick Vethaak, Johannes F. de Boer, Freek Ariese","doi":"10.1186/s41476-021-00155-w","DOIUrl":null,"url":null,"abstract":"<p>Two simulation programs of a stimulated Raman scattering microscopy (SRS) imaging system with lock-in amplifier (LIA) detection were developed. SRS is an imaging technique based on the vibrational Raman cross-section as the contrast mechanism and enables fast, label-free imaging. Most SRS implementations are based on LIA detection of a modulated signal. However, building and operating such SRS set-ups still poses a challenge when selecting the LIA parameter settings for optimized acquisition speed or image quality. Moreover, the type of sample, e.g. a sparse sample vs. a densely packed sample, the required resolution as well as the Raman cross-section and the laser powers affect the parameter choice.</p><p>A simulation program was used to find these optimal parameters. The focal spot diameters of the individual lasers (pump and Stokes) were used to estimate the effective SRS signal focal spot and the (optical) spatial resolution. By calibrating the signal and noise propagation through an SRS system for a known molecule, we estimated the signal and noise input to the LIA. We used a low pass filter model to simulate the LIA behavior in order to find the optimal parameters (i.e. filter order and time constant).</p><p>Optimization was done for either image quality (expressed as contrast to noise ratio) or acquisition time. The targeted object size was first determined as a measure for the required resolution. The simulation output consisted of the LIA parameters, pixel dwell time and contrast to noise ratio.</p><p>In a second simulation we evaluated SRS imaging based on the same principles as the optimal setting simulation, i.e. the signals were propagated through an imaging system and LIA detection. The simulated images were compared to experimental SRS images of polystyrene beads.</p><p>Finally, the same software was used to simulate multiplexed SRS imaging. In this study we modeled a six-channel frequency-encoded multiplexed SRS system demodulated with six LIA channels. We evaluated the inter-channel crosstalk as a function of chosen LIA parameters, which in multiplex SRS imaging also needs to be considered.</p><p>These programs to optimize the contrast to noise ratio, acquisition speed, resolution and crosstalk will be useful for operating stimulated Raman scattering imaging setup, as well as for designing novel setups.</p>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"17 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41476-021-00155-w","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-021-00155-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 6
Abstract
Two simulation programs of a stimulated Raman scattering microscopy (SRS) imaging system with lock-in amplifier (LIA) detection were developed. SRS is an imaging technique based on the vibrational Raman cross-section as the contrast mechanism and enables fast, label-free imaging. Most SRS implementations are based on LIA detection of a modulated signal. However, building and operating such SRS set-ups still poses a challenge when selecting the LIA parameter settings for optimized acquisition speed or image quality. Moreover, the type of sample, e.g. a sparse sample vs. a densely packed sample, the required resolution as well as the Raman cross-section and the laser powers affect the parameter choice.
A simulation program was used to find these optimal parameters. The focal spot diameters of the individual lasers (pump and Stokes) were used to estimate the effective SRS signal focal spot and the (optical) spatial resolution. By calibrating the signal and noise propagation through an SRS system for a known molecule, we estimated the signal and noise input to the LIA. We used a low pass filter model to simulate the LIA behavior in order to find the optimal parameters (i.e. filter order and time constant).
Optimization was done for either image quality (expressed as contrast to noise ratio) or acquisition time. The targeted object size was first determined as a measure for the required resolution. The simulation output consisted of the LIA parameters, pixel dwell time and contrast to noise ratio.
In a second simulation we evaluated SRS imaging based on the same principles as the optimal setting simulation, i.e. the signals were propagated through an imaging system and LIA detection. The simulated images were compared to experimental SRS images of polystyrene beads.
Finally, the same software was used to simulate multiplexed SRS imaging. In this study we modeled a six-channel frequency-encoded multiplexed SRS system demodulated with six LIA channels. We evaluated the inter-channel crosstalk as a function of chosen LIA parameters, which in multiplex SRS imaging also needs to be considered.
These programs to optimize the contrast to noise ratio, acquisition speed, resolution and crosstalk will be useful for operating stimulated Raman scattering imaging setup, as well as for designing novel setups.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.