Miguel Angel Garrido, Ricardo Grande, Kristin M. Kurianski, Gigliola Staffilani
{"title":"Large deviations principle for the cubic NLS equation","authors":"Miguel Angel Garrido, Ricardo Grande, Kristin M. Kurianski, Gigliola Staffilani","doi":"10.1002/cpa.22131","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a probabilistic study of rare phenomena of the cubic nonlinear Schrödinger equation on the torus in a weakly nonlinear setting. This equation has been used as a model to numerically study the formation of rogue waves in deep sea. Our results are twofold: first, we introduce a notion of criticality and prove a Large Deviations Principle (LDP) for the subcritical and critical cases. Second, we study the most likely initial conditions that lead to the formation of a rogue wave, from a theoretical and numerical point of view. Finally, we propose several open questions for future research.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22131","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, we present a probabilistic study of rare phenomena of the cubic nonlinear Schrödinger equation on the torus in a weakly nonlinear setting. This equation has been used as a model to numerically study the formation of rogue waves in deep sea. Our results are twofold: first, we introduce a notion of criticality and prove a Large Deviations Principle (LDP) for the subcritical and critical cases. Second, we study the most likely initial conditions that lead to the formation of a rogue wave, from a theoretical and numerical point of view. Finally, we propose several open questions for future research.