The precise control of end flare with residual stresses of UHSS thin-walled component in roll forming process

IF 1.7 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Jiaojiao Cheng, Jianguo Cao, Zhidong Wei, Xuesong Wang, Hao Zhu, R. Zhao
{"title":"The precise control of end flare with residual stresses of UHSS thin-walled component in roll forming process","authors":"Jiaojiao Cheng, Jianguo Cao, Zhidong Wei, Xuesong Wang, Hao Zhu, R. Zhao","doi":"10.1080/03019233.2023.2212933","DOIUrl":null,"url":null,"abstract":"ABSTRACT To control precisely end flare of UHSS thin-walled component, FEA (finite element analysis) model of multi-pass RF (roll forming) process is established. Numerical simulations with developed FEA model considered Young's modulus variation and RF tests are conducted to explain the origin of end flare with residual stresses. It's found that the overlap of bending moment caused by residual longitudinal stress and twisting moment caused by residual shear stress in transversal-longitudinal direction leads to opening deformation in front end and back end for hat channel steel. End flare will decrease with the increase of flange length and increase with the increase of material strength. The effect of forming parameters on end flare is analysed that end flare can be reduced with UDT-type (USTB-Durable T) method, constant-arc-length method and appropriate forming parameters. The findings are applied to control end flare of hat channel steel in actual RF process to meet high-precision requirements.","PeriodicalId":14753,"journal":{"name":"Ironmaking & Steelmaking","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ironmaking & Steelmaking","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/03019233.2023.2212933","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT To control precisely end flare of UHSS thin-walled component, FEA (finite element analysis) model of multi-pass RF (roll forming) process is established. Numerical simulations with developed FEA model considered Young's modulus variation and RF tests are conducted to explain the origin of end flare with residual stresses. It's found that the overlap of bending moment caused by residual longitudinal stress and twisting moment caused by residual shear stress in transversal-longitudinal direction leads to opening deformation in front end and back end for hat channel steel. End flare will decrease with the increase of flange length and increase with the increase of material strength. The effect of forming parameters on end flare is analysed that end flare can be reduced with UDT-type (USTB-Durable T) method, constant-arc-length method and appropriate forming parameters. The findings are applied to control end flare of hat channel steel in actual RF process to meet high-precision requirements.
UHSS薄壁件轧制过程中残余应力对端部扩口的精确控制
摘要为了精确控制超高强度薄壁构件的端部扩口,建立了多道次滚压成形的有限元分析模型。采用考虑杨氏模量变化的有限元分析模型进行了数值模拟,并进行了RF试验,以解释带有残余应力的端部扩口的起源。研究发现,残余纵向应力引起的弯矩与残余剪应力引起在横向-纵向方向上的弯矩重叠,导致帽槽钢的前端和后端开口变形。端部扩口会随着法兰长度的增加而减少,而随着材料强度的增加而增加。分析了成形参数对端部扩口的影响,指出采用UDT型(USTB耐用T)法、恒定弧长法和适当的成形参数可以减少端部扩口率。将研究结果应用于实际射频工艺中帽型槽钢端部扩口的控制,以满足高精度要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ironmaking & Steelmaking
Ironmaking & Steelmaking 工程技术-冶金工程
CiteScore
3.70
自引率
9.50%
发文量
125
审稿时长
2.9 months
期刊介绍: Ironmaking & Steelmaking: Processes, Products and Applications monitors international technological advances in the industry with a strong element of engineering and product related material. First class refereed papers from the international iron and steel community cover all stages of the process, from ironmaking and its attendant technologies, through casting and steelmaking, to rolling, forming and delivery of the product, including monitoring, quality assurance and environmental issues. The journal also carries research profiles, features on technological and industry developments and expert reviews on major conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信