{"title":"Wide-Ranging Reference Correlations for Dilute Gas Transport Properties Based on Ab Initio Calculations and Viscosity Ratio Measurements","authors":"D. Rowland, Saif Z. S. Al Ghafri, E. May","doi":"10.1063/1.5125100","DOIUrl":null,"url":null,"abstract":"The combined use of experimental viscosity ratios together with ab initio calculations for helium has driven significant improvements in the description of dilute gas transport properties. Here, we first use improvements made to ab initio helium calculations to update viscosity ratios measured for H2, Ar, CH4, and Xe by May et al. [Int. J. Thermophys. 28, 1085 (2007)] over the temperature range of 200–400 K, reducing the uncertainties of the data to 0.055%, 0.038%, 0.067%, and 0.084%, respectively. Separately, we extend the technique of combining viscosity ratios with ab initio calculations to develop new reference correlations for the dilute gas viscosity of 10 gases: helium, neon, argon, krypton, xenon, hydrogen, nitrogen, methane, ethane, and propane. This is achieved by combining the ratios of viscosities calculated ab initio at the target temperature and at 298.15 K with experimentally based reference viscosity values for each gas at 298.15 K. The new reference dilute gas viscosity correlations span temperature ranges from at least 150 K to 1200 K with relative uncertainties between 30% (krypton) and 85% (methane) lower than the original ab initio results. For the noble gases, ab initio calculations for the Prandtl number are used to develop reference correlations for thermal conductivity ranging from at least 100 K to 5000 K, with relative uncertainties ranging from 0.04% (argon) to 0.20% (xenon). The new reference correlations are compared with available experimental data at dilute gas conditions. In general, the data agree with the new correlations within the claimed experimental uncertainty.","PeriodicalId":16783,"journal":{"name":"Journal of Physical and Chemical Reference Data","volume":"49 1","pages":"013101"},"PeriodicalIF":4.4000,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5125100","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical and Chemical Reference Data","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/1.5125100","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
The combined use of experimental viscosity ratios together with ab initio calculations for helium has driven significant improvements in the description of dilute gas transport properties. Here, we first use improvements made to ab initio helium calculations to update viscosity ratios measured for H2, Ar, CH4, and Xe by May et al. [Int. J. Thermophys. 28, 1085 (2007)] over the temperature range of 200–400 K, reducing the uncertainties of the data to 0.055%, 0.038%, 0.067%, and 0.084%, respectively. Separately, we extend the technique of combining viscosity ratios with ab initio calculations to develop new reference correlations for the dilute gas viscosity of 10 gases: helium, neon, argon, krypton, xenon, hydrogen, nitrogen, methane, ethane, and propane. This is achieved by combining the ratios of viscosities calculated ab initio at the target temperature and at 298.15 K with experimentally based reference viscosity values for each gas at 298.15 K. The new reference dilute gas viscosity correlations span temperature ranges from at least 150 K to 1200 K with relative uncertainties between 30% (krypton) and 85% (methane) lower than the original ab initio results. For the noble gases, ab initio calculations for the Prandtl number are used to develop reference correlations for thermal conductivity ranging from at least 100 K to 5000 K, with relative uncertainties ranging from 0.04% (argon) to 0.20% (xenon). The new reference correlations are compared with available experimental data at dilute gas conditions. In general, the data agree with the new correlations within the claimed experimental uncertainty.
期刊介绍:
The Journal of Physical and Chemical Reference Data (JPCRD) is published by AIP Publishing for the U.S. Department of Commerce National Institute of Standards and Technology (NIST). The journal provides critically evaluated physical and chemical property data, fully documented as to the original sources and the criteria used for evaluation, preferably with uncertainty analysis. Critical reviews may also be included if they document a reference database, review the data situation in a field, review reference-quality measurement techniques, or review data evaluation methods.