{"title":"Boundary singularities in mean curvature flow and total curvature of minimal surface boundaries","authors":"B. White","doi":"10.4171/cmh/542","DOIUrl":null,"url":null,"abstract":". For hypersurfaces moving by standard mean curvature flow with boundary, we show that if the tangent flow at a boundary singularity is given by a smoothly embedded shrinker, then the shrinker must be non-orientable. We also show that there is an initially smooth surface in R 3 that develops a boundary singularity for which the shrinker is smoothly embedded (and therefore non-orientable). Indeed, we show that there is a nonempty open set of such initial surfaces. Let κ be the largest number with the following property: if M is a minimal surface in R 3 bounded by a smooth simple closed curve of total curvature < κ , then M is a disk. Examples show that κ < 4 π . In this paper, we use mean curvature flow to show that κ > 3 π . We get a slightly larger lower bound for orientable surfaces.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/542","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
. For hypersurfaces moving by standard mean curvature flow with boundary, we show that if the tangent flow at a boundary singularity is given by a smoothly embedded shrinker, then the shrinker must be non-orientable. We also show that there is an initially smooth surface in R 3 that develops a boundary singularity for which the shrinker is smoothly embedded (and therefore non-orientable). Indeed, we show that there is a nonempty open set of such initial surfaces. Let κ be the largest number with the following property: if M is a minimal surface in R 3 bounded by a smooth simple closed curve of total curvature < κ , then M is a disk. Examples show that κ < 4 π . In this paper, we use mean curvature flow to show that κ > 3 π . We get a slightly larger lower bound for orientable surfaces.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.