Boundary singularities in mean curvature flow and total curvature of minimal surface boundaries

IF 1.1 3区 数学 Q1 MATHEMATICS
B. White
{"title":"Boundary singularities in mean curvature flow and total curvature of minimal surface boundaries","authors":"B. White","doi":"10.4171/cmh/542","DOIUrl":null,"url":null,"abstract":". For hypersurfaces moving by standard mean curvature flow with boundary, we show that if the tangent flow at a boundary singularity is given by a smoothly embedded shrinker, then the shrinker must be non-orientable. We also show that there is an initially smooth surface in R 3 that develops a boundary singularity for which the shrinker is smoothly embedded (and therefore non-orientable). Indeed, we show that there is a nonempty open set of such initial surfaces. Let κ be the largest number with the following property: if M is a minimal surface in R 3 bounded by a smooth simple closed curve of total curvature < κ , then M is a disk. Examples show that κ < 4 π . In this paper, we use mean curvature flow to show that κ > 3 π . We get a slightly larger lower bound for orientable surfaces.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/542","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. For hypersurfaces moving by standard mean curvature flow with boundary, we show that if the tangent flow at a boundary singularity is given by a smoothly embedded shrinker, then the shrinker must be non-orientable. We also show that there is an initially smooth surface in R 3 that develops a boundary singularity for which the shrinker is smoothly embedded (and therefore non-orientable). Indeed, we show that there is a nonempty open set of such initial surfaces. Let κ be the largest number with the following property: if M is a minimal surface in R 3 bounded by a smooth simple closed curve of total curvature < κ , then M is a disk. Examples show that κ < 4 π . In this paper, we use mean curvature flow to show that κ > 3 π . We get a slightly larger lower bound for orientable surfaces.
平均曲率流中的边界奇异性和最小曲面边界的总曲率
对于以标准平均曲率流随边界移动的超曲面,我们证明了如果边界奇异点处的切线流是由光滑嵌入的收缩器给出的,那么收缩器必须是不可定向的。我们还证明了R3中存在一个初始光滑的表面,它发展了一个边界奇异性,收缩器是光滑嵌入的(因此是不可定向的)。事实上,我们证明了存在这样一组非空的初始曲面。设κ是具有以下性质的最大数:如果M是R3中由全曲率<κ的光滑简单闭合曲线定界的极小曲面,则M是圆盘。实例表明κ<4π。在本文中,我们使用平均曲率流来证明κ>3π。我们得到了可定向曲面的一个稍大的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信