{"title":"Characteristics of Tetracycline Degradation Coupled Simultaneous Nitrification-Denitrification and Phosphorus Removal in Aquaculture Wastewater","authors":"Sicheng Shao, Minghui Wang, Jinfeng Zhong, Xiangwei Wu","doi":"10.1080/01490451.2023.2182929","DOIUrl":null,"url":null,"abstract":"Abstract Although residual tetracycline, NH4 +-N, and P in aquaculture wastewater have been frequently detected, their simultaneous removal has received little attention. The simultaneous and efficient removal of tetracycline, NH4 +-N, COD, and P in aquaculture wastewater was achieved with a laboratory-scale moving bed biofilm reactor (MBBR) under different influent C/N ratios. The results suggested that tetracycline could be degraded efficiently without using an additional organic carbon source. Most of the tetracycline (>80%), NH4 +-N (>73%), TN (>68%), TP (>59%), and COD (>78%) were synchronously removed under the higher C/N ratios. The electron transport system activity (ETSA), dissolved organic matter (DOM), and extracellular polymeric substances (EPS) were evaluated for biofilm performance during aquaculture wastewater remediation. The results indicated that the protein (PN) and polysaccharide (PS) concentrations, and fluorescence intensities were significantly different because the influent C/N ratios changed the biofilm activity. The ETSA values were lowest when tetracycline was the sole carbon source, which suggested that tetracycline affected the nitrification activity of biofilms. Sphingobacteriia, Betaproteobacteria, and Alphaproteobacteria were identified as the dominant bacterial classes. This study provides a new strategy for the removal of tetracycline and nutrients from aquaculture wastewater.","PeriodicalId":12647,"journal":{"name":"Geomicrobiology Journal","volume":"40 1","pages":"399 - 412"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomicrobiology Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/01490451.2023.2182929","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Although residual tetracycline, NH4 +-N, and P in aquaculture wastewater have been frequently detected, their simultaneous removal has received little attention. The simultaneous and efficient removal of tetracycline, NH4 +-N, COD, and P in aquaculture wastewater was achieved with a laboratory-scale moving bed biofilm reactor (MBBR) under different influent C/N ratios. The results suggested that tetracycline could be degraded efficiently without using an additional organic carbon source. Most of the tetracycline (>80%), NH4 +-N (>73%), TN (>68%), TP (>59%), and COD (>78%) were synchronously removed under the higher C/N ratios. The electron transport system activity (ETSA), dissolved organic matter (DOM), and extracellular polymeric substances (EPS) were evaluated for biofilm performance during aquaculture wastewater remediation. The results indicated that the protein (PN) and polysaccharide (PS) concentrations, and fluorescence intensities were significantly different because the influent C/N ratios changed the biofilm activity. The ETSA values were lowest when tetracycline was the sole carbon source, which suggested that tetracycline affected the nitrification activity of biofilms. Sphingobacteriia, Betaproteobacteria, and Alphaproteobacteria were identified as the dominant bacterial classes. This study provides a new strategy for the removal of tetracycline and nutrients from aquaculture wastewater.
期刊介绍:
Geomicrobiology Journal is a unified vehicle for research and review articles in geomicrobiology and microbial biogeochemistry. One or two special issues devoted to specific geomicrobiological topics are published each year. General articles deal with microbial transformations of geologically important minerals and elements, including those that occur in marine and freshwater environments, soils, mineral deposits and rock formations, and the environmental biogeochemical impact of these transformations. In this context, the functions of Bacteria and Archaea, yeasts, filamentous fungi, micro-algae, protists, and their viruses as geochemical agents are examined.
Articles may stress the nature of specific geologically important microorganisms and their activities, or the environmental and geological consequences of geomicrobiological activity.
The Journal covers an array of topics such as:
microbial weathering;
microbial roles in the formation and degradation of specific minerals;
mineralization of organic matter;
petroleum microbiology;
subsurface microbiology;
biofilm form and function, and other interfacial phenomena of geological importance;
biogeochemical cycling of elements;
isotopic fractionation;
paleomicrobiology.
Applied topics such as bioleaching microbiology, geomicrobiological prospecting, and groundwater pollution microbiology are addressed. New methods and techniques applied in geomicrobiological studies are also considered.