Iterative Kernel Density Estimation Applied to Grouped Data: Estimating Poverty and Inequality Indicators from the German Microcensus

Pub Date : 2022-06-01 DOI:10.2478/jos-2022-0027
Paul Walter, Marcus Gross, T. Schmid, K. Weimer
{"title":"Iterative Kernel Density Estimation Applied to Grouped Data: Estimating Poverty and Inequality Indicators from the German Microcensus","authors":"Paul Walter, Marcus Gross, T. Schmid, K. Weimer","doi":"10.2478/jos-2022-0027","DOIUrl":null,"url":null,"abstract":"Abstract The estimation of poverty and inequality indicators based on survey data is trivial as long as the variable of interest (e.g., income or consumption) is measured on a metric scale. However, estimation is not directly possible, using standard formulas, when the income variable is grouped due to confidentiality constraints or in order to decrease item nonresponse. We propose an iterative kernel density algorithm that generates metric pseudo samples from the grouped variable for the estimation of indicators. The corresponding standard errors are estimated by a non-parametric bootstrap that accounts for the additional uncertainty due to the grouping. The algorithm enables the use of survey weights and household equivalence scales. The proposed method is applied to the German Microcensus for estimating the regional distribution of poverty and inequality in Germany.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/jos-2022-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The estimation of poverty and inequality indicators based on survey data is trivial as long as the variable of interest (e.g., income or consumption) is measured on a metric scale. However, estimation is not directly possible, using standard formulas, when the income variable is grouped due to confidentiality constraints or in order to decrease item nonresponse. We propose an iterative kernel density algorithm that generates metric pseudo samples from the grouped variable for the estimation of indicators. The corresponding standard errors are estimated by a non-parametric bootstrap that accounts for the additional uncertainty due to the grouping. The algorithm enables the use of survey weights and household equivalence scales. The proposed method is applied to the German Microcensus for estimating the regional distribution of poverty and inequality in Germany.
分享
查看原文
应用于分组数据的迭代核密度估计:从德国微观经济学中估计贫困和不平等指标
摘要只要利益变量(如收入或消费)是以度量尺度衡量的,基于调查数据对贫困和不平等指标的估计就微不足道。然而,当由于保密限制或为了减少项目无响应而对收入变量进行分组时,使用标准公式进行估计是不可能的。我们提出了一种迭代核密度算法,该算法从分组变量中生成度量伪样本,用于估计指标。相应的标准误差是通过非参数引导估计的,该非参数引导解释了由于分组而产生的额外不确定性。该算法能够使用调查权重和家庭等效量表。将所提出的方法应用于德国微观经济学,以估计德国贫困和不平等的区域分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信