A General Framework to Simulate Diffusions with Discontinuous Coefficients and Local Times

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Kailin Ding, Zhenyu Cui
{"title":"A General Framework to Simulate Diffusions with Discontinuous Coefficients and Local Times","authors":"Kailin Ding, Zhenyu Cui","doi":"10.1145/3559541","DOIUrl":null,"url":null,"abstract":"In this article, we propose an efficient general simulation method for diffusions that are solutions to stochastic differential equations with discontinuous coefficients and local time terms. The proposed method is based on sampling from the corresponding continuous-time Markov chain approximation. In contrast to existing time discretization schemes, the Markov chain approximation method corresponds to a spatial discretization scheme and is demonstrated to be particularly suited for simulating diffusion processes with discontinuities in their state space. We establish the theoretical convergence order and also demonstrate the accuracy and robustness of the method in numerical examples by comparing it to the known benchmarks in terms of root mean squared error, runtime, and the parameter sensitivity.","PeriodicalId":50943,"journal":{"name":"ACM Transactions on Modeling and Computer Simulation","volume":" ","pages":"1 - 29"},"PeriodicalIF":0.7000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Computer Simulation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3559541","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we propose an efficient general simulation method for diffusions that are solutions to stochastic differential equations with discontinuous coefficients and local time terms. The proposed method is based on sampling from the corresponding continuous-time Markov chain approximation. In contrast to existing time discretization schemes, the Markov chain approximation method corresponds to a spatial discretization scheme and is demonstrated to be particularly suited for simulating diffusion processes with discontinuities in their state space. We establish the theoretical convergence order and also demonstrate the accuracy and robustness of the method in numerical examples by comparing it to the known benchmarks in terms of root mean squared error, runtime, and the parameter sensitivity.
一个模拟具有间断系数和局部时间的扩散的通用框架
在本文中,我们提出了一种有效的一般扩散模拟方法,该方法是具有不连续系数和局部时间项的随机微分方程的解。所提出的方法是基于相应的连续时间马尔可夫链近似的采样。与现有的时间离散化方案相比,马尔可夫链近似方法对应于空间离散化方案,并且被证明特别适合于模拟状态空间中具有不连续性的扩散过程。我们建立了理论收敛阶,并通过将该方法与已知基准在均方根误差、运行时间和参数灵敏度方面进行比较,在数值示例中证明了该方法的准确性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Modeling and Computer Simulation
ACM Transactions on Modeling and Computer Simulation 工程技术-计算机:跨学科应用
CiteScore
2.50
自引率
22.20%
发文量
29
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Modeling and Computer Simulation (TOMACS) provides a single archival source for the publication of high-quality research and developmental results referring to all phases of the modeling and simulation life cycle. The subjects of emphasis are discrete event simulation, combined discrete and continuous simulation, as well as Monte Carlo methods. The use of simulation techniques is pervasive, extending to virtually all the sciences. TOMACS serves to enhance the understanding, improve the practice, and increase the utilization of computer simulation. Submissions should contribute to the realization of these objectives, and papers treating applications should stress their contributions vis-á-vis these objectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信