Average Voltage and Multilayer Perceptron Neural Network Based Scheme to Predict Transient Stability Status

E. Frimpong, P. Okyere, J. Asumadu
{"title":"Average Voltage and Multilayer Perceptron Neural Network Based Scheme to Predict Transient Stability Status","authors":"E. Frimpong, P. Okyere, J. Asumadu","doi":"10.25077/jnte.v8n2.668.2019","DOIUrl":null,"url":null,"abstract":"This paper presents a technique that predicts the transient stability status of a power system after a disturbance. It uses generator bus voltage as input parameter and a trained single-input multilayer perceptron neural network (MLPNN) as decision tool. When activated, the scheme samples voltages of all generator buses. Two sets of voltage values are extracted from each sampled generator bus voltage. For each set, the minimum voltage value is obtained. An average value is computed from the minimum voltage values extracted from the first sample sets of the various generator buses. The average value is then used to compute the deviations of the minimum voltage values from the second sets of data. The deviations are then summed and used as input to a trained MLPNN which indicates the stability status. The technique was tested using the IEEE 39-bus test system and its accuracy found to be 98.97%.","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v8n2.668.2019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a technique that predicts the transient stability status of a power system after a disturbance. It uses generator bus voltage as input parameter and a trained single-input multilayer perceptron neural network (MLPNN) as decision tool. When activated, the scheme samples voltages of all generator buses. Two sets of voltage values are extracted from each sampled generator bus voltage. For each set, the minimum voltage value is obtained. An average value is computed from the minimum voltage values extracted from the first sample sets of the various generator buses. The average value is then used to compute the deviations of the minimum voltage values from the second sets of data. The deviations are then summed and used as input to a trained MLPNN which indicates the stability status. The technique was tested using the IEEE 39-bus test system and its accuracy found to be 98.97%.
基于平均电压和多层感知器神经网络的暂态稳定预测方案
本文提出了一种预测电力系统扰动后暂态稳定状态的技术。它使用发电机母线电压作为输入参数,并使用经过训练的单输入多层感知器神经网络(MLPNN)作为决策工具。激活时,该方案对所有发电机母线的电压进行采样。从每个采样的发电机总线电压中提取两组电压值。对于每组,获得最小电压值。根据从各种发电机总线的第一样本组提取的最小电压值来计算平均值。然后使用平均值来计算最小电压值与第二组数据的偏差。然后将偏差求和并用作训练的MLPNN的输入,该MLPNN指示稳定性状态。使用IEEE39总线测试系统对该技术进行了测试,其准确率为98.97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信