Solvability of a system of integral equations in two variables in the weighted Sobolev space $W^{1,1}_\omega(a,b)$ using a generalized measure of noncompactness
Taqi A. M. Shatnawi, A. Boudaoui, W. Shatanawi, Noura Laksaci
{"title":"Solvability of a system of integral equations in two variables in the weighted Sobolev space $W^{1,1}_\\omega(a,b)$ using a generalized measure of noncompactness","authors":"Taqi A. M. Shatnawi, A. Boudaoui, W. Shatanawi, Noura Laksaci","doi":"10.15388/namc.2022.27.27961","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the existence of solutions for a coupled system of integral equations in the Cartesian product of weighted Sobolev spaces E = Wω1,1 (a,b) x Wω1,1 (a,b). The results were achieved by equipping the space E with the vector-valued norms and using the measure of noncompactness constructed in [F.P. Najafabad, J.J. Nieto, H.A. Kayvanloo, Measure of noncompactness on weighted Sobolev space with an application to some nonlinear convolution type integral equations, J. Fixed Point Theory Appl., 22(3), 75, 2020] to applicate the generalized Darbo’s fixed point theorem [J.R. Graef, J. Henderson, and A. Ouahab, Topological Methods for Differential Equations and Inclusions, CRC Press, Boca Raton, FL, 2018].","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2022.27.27961","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we deal with the existence of solutions for a coupled system of integral equations in the Cartesian product of weighted Sobolev spaces E = Wω1,1 (a,b) x Wω1,1 (a,b). The results were achieved by equipping the space E with the vector-valued norms and using the measure of noncompactness constructed in [F.P. Najafabad, J.J. Nieto, H.A. Kayvanloo, Measure of noncompactness on weighted Sobolev space with an application to some nonlinear convolution type integral equations, J. Fixed Point Theory Appl., 22(3), 75, 2020] to applicate the generalized Darbo’s fixed point theorem [J.R. Graef, J. Henderson, and A. Ouahab, Topological Methods for Differential Equations and Inclusions, CRC Press, Boca Raton, FL, 2018].
期刊介绍:
The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology.
The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.