The special tree number

Pub Date : 2022-03-08 DOI:10.4064/fm180-1-2023
Corey Bacal Switzer
{"title":"The special tree number","authors":"Corey Bacal Switzer","doi":"10.4064/fm180-1-2023","DOIUrl":null,"url":null,"abstract":"Define the special tree number, denoted $\\mathfrak{st}$, to be the least size of a tree of height $\\omega_1$ which is neither special nor has a cofinal branch. This cardinal had previously been studied in the context of fragments of $\\mathsf{MA}$ but in this paper we look at its relation to other, more typical, cardinal characteristics. Classical facts imply that $\\aleph_1 \\leq \\mathfrak{st} \\leq 2^{\\aleph_0}$, under Martin's Axiom $\\mathfrak{st} = 2^{\\aleph_0}$ and that $\\mathfrak{st} = \\aleph_1$ is consistent with $\\mathsf{MA}({\\rm Knaster}) + 2^{\\aleph_0} = \\kappa$ for any regular $\\kappa$ thus the value of $\\mathfrak{st}$ is not decided by $\\mathsf{ZFC}$ and in fact can be strictly below essentially all well studied cardinal characteristics. We show that conversely it is consistent that $\\mathfrak{st} = 2^{\\aleph_0} = \\kappa$ for any $\\kappa$ of uncountable cofinality while ${\\rm non}(\\mathcal M) = \\mathfrak{a} = \\mathfrak{s} = \\mathfrak{g} = \\aleph_1$. In particular $\\mathfrak{st}$ is independent of the lefthand side of Cicho\\'{n}'s diagram, amongst other things. The proof involves an in depth study of the standard ccc forcing notion to specialize (wide) Aronszajn trees, which may be of independent interest.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm180-1-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Define the special tree number, denoted $\mathfrak{st}$, to be the least size of a tree of height $\omega_1$ which is neither special nor has a cofinal branch. This cardinal had previously been studied in the context of fragments of $\mathsf{MA}$ but in this paper we look at its relation to other, more typical, cardinal characteristics. Classical facts imply that $\aleph_1 \leq \mathfrak{st} \leq 2^{\aleph_0}$, under Martin's Axiom $\mathfrak{st} = 2^{\aleph_0}$ and that $\mathfrak{st} = \aleph_1$ is consistent with $\mathsf{MA}({\rm Knaster}) + 2^{\aleph_0} = \kappa$ for any regular $\kappa$ thus the value of $\mathfrak{st}$ is not decided by $\mathsf{ZFC}$ and in fact can be strictly below essentially all well studied cardinal characteristics. We show that conversely it is consistent that $\mathfrak{st} = 2^{\aleph_0} = \kappa$ for any $\kappa$ of uncountable cofinality while ${\rm non}(\mathcal M) = \mathfrak{a} = \mathfrak{s} = \mathfrak{g} = \aleph_1$. In particular $\mathfrak{st}$ is independent of the lefthand side of Cicho\'{n}'s diagram, amongst other things. The proof involves an in depth study of the standard ccc forcing notion to specialize (wide) Aronszajn trees, which may be of independent interest.
分享
查看原文
特殊的树编号
定义特殊树号,表示为$\mathfrak{st}$,是高度为$\omega_1$的树的最小大小,该树既不特殊也没有共尾分支。这个基数以前曾在$\mathsf{MA}$的片段的背景下进行过研究,但在本文中,我们研究了它与其他更典型的基数特征的关系。经典事实表明$\aleph_1\leq\mathfrak{st}\leq2^{\aleph_0}$,在Martin公理$\mathfrak{st}=2^{\aleph_0}$下,并且对于任何正则$\akappa$。相反,我们证明了对于任何不可数余数的$\kappa$,$\mathfrak{st}=2^{\aleph_0}=\akappa$是一致的,而${\rm-non}(\mathcalM)=\mathfrak{a}=\mathfrak{s}=\ mathfrak{g}=\aleph_1$。特别地,$\mathfrak{st}$独立于Cicho图的左手边。该证明涉及对标准ccc强制概念的深入研究,以专门化(宽)Aronszajn树,这可能具有独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信