Handling Ignorable and Non-ignorable Missing Data through Bayesian Methods in JAGS

Ziqian Xu
{"title":"Handling Ignorable and Non-ignorable Missing Data through Bayesian Methods in JAGS","authors":"Ziqian Xu","doi":"10.35566/jbds/v2n2/xu","DOIUrl":null,"url":null,"abstract":"\n \n \nWith the prevalence of missing data in social science research, it is necessary to use methods for handling missing data. One framework in which data with missing values can still be used for parameter estimation is the Bayesian framework. In this tutorial, different missing data mechanisms including Missing Completely at Random, Missing at Random, and Missing Not at Random are introduced. Methods for estimating models with missing values under the Bayesian framework for both ignorable and non-ignorable missingness are also discussed. A structural equation model on data from the Advanced Cognitive Training for Independent and Vital Elderly study is used as an illustration on how to fit missing data models in JAGS. \n \n \n","PeriodicalId":93575,"journal":{"name":"Journal of behavioral data science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of behavioral data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35566/jbds/v2n2/xu","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With the prevalence of missing data in social science research, it is necessary to use methods for handling missing data. One framework in which data with missing values can still be used for parameter estimation is the Bayesian framework. In this tutorial, different missing data mechanisms including Missing Completely at Random, Missing at Random, and Missing Not at Random are introduced. Methods for estimating models with missing values under the Bayesian framework for both ignorable and non-ignorable missingness are also discussed. A structural equation model on data from the Advanced Cognitive Training for Independent and Vital Elderly study is used as an illustration on how to fit missing data models in JAGS.
JAGS中用贝叶斯方法处理可忽略和不可忽略的缺失数据
随着社会科学研究中缺失数据的普遍存在,有必要使用处理缺失数据的方法。其中具有缺失值的数据仍然可以用于参数估计的一个框架是贝叶斯框架。在本教程中,介绍了不同的丢失数据机制,包括完全随机丢失、随机丢失和不随机丢失。还讨论了在可忽略和不可忽略缺失的贝叶斯框架下估计具有缺失值的模型的方法。使用独立和重要老年人高级认知训练研究数据的结构方程模型来说明如何拟合JAGS中缺失的数据模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信