{"title":"APPLICATIONS OF PHOTOGRAMMETRY TO NEOICHNOLOGICAL STUDIES: THE SIGNIFICANCE OF SHOREBIRD TRACKWAY DISTRIBUTIONS AT THE BAY OF FUNDY","authors":"S. Melnyk, A. Cowper, J. Zonneveld, M. Gingras","doi":"10.2110/palo.2021.055","DOIUrl":null,"url":null,"abstract":"Abstract: Low-level drone photogrammetry is a technique that allows for the construction of surface orthomosaics and elevation models. Despite being used for a wide range of geological applications, these types of datasets have not yet been explored from a neoichnological perspective. This study uses three examples of tidal flats from the Bay of Fundy to demonstrate the usefulness of 3D photogrammetry in the collection of high-resolution neoichnological datasets. The first site is a bar top along the Petitcodiac River that is situated between a salt marsh and tidal channel margin. The second site, which is located along the Shepody River, represents a laterally accreting channel margin and thus has a relatively high relief. In contrast, the final site comprises a gently sloping tidal flat that is far from the influence of a major tidal channel. Spatial analysis of the shorebird tracks at each site was used to assess the relationship between shorebird track distributions (e.g., track density, stride orientation, stride length) and various environmental and ecological factors (e.g., topography, tidal current direction, invertebrate prey distributions). Additionally, morphological analysis of the tracks was used to assess variations in substrate cohesiveness, which is the environmental factor that exhibited the most variability at the study locations. The track record at each site represents a shorebird flock that traversed the tidal flats in such a way as to optimize foraging success. As a result, the abundance and availability of macrobenthic invertebrate prey was the primary factor contributing to shorebird track density. This paper aims to assess local-scale variations in tidal flat substrate cohesiveness and provide context for the interpretation of fossilized shorebird trackways.","PeriodicalId":54647,"journal":{"name":"Palaios","volume":"37 1","pages":"606 - 621"},"PeriodicalIF":1.5000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palaios","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2110/palo.2021.055","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Low-level drone photogrammetry is a technique that allows for the construction of surface orthomosaics and elevation models. Despite being used for a wide range of geological applications, these types of datasets have not yet been explored from a neoichnological perspective. This study uses three examples of tidal flats from the Bay of Fundy to demonstrate the usefulness of 3D photogrammetry in the collection of high-resolution neoichnological datasets. The first site is a bar top along the Petitcodiac River that is situated between a salt marsh and tidal channel margin. The second site, which is located along the Shepody River, represents a laterally accreting channel margin and thus has a relatively high relief. In contrast, the final site comprises a gently sloping tidal flat that is far from the influence of a major tidal channel. Spatial analysis of the shorebird tracks at each site was used to assess the relationship between shorebird track distributions (e.g., track density, stride orientation, stride length) and various environmental and ecological factors (e.g., topography, tidal current direction, invertebrate prey distributions). Additionally, morphological analysis of the tracks was used to assess variations in substrate cohesiveness, which is the environmental factor that exhibited the most variability at the study locations. The track record at each site represents a shorebird flock that traversed the tidal flats in such a way as to optimize foraging success. As a result, the abundance and availability of macrobenthic invertebrate prey was the primary factor contributing to shorebird track density. This paper aims to assess local-scale variations in tidal flat substrate cohesiveness and provide context for the interpretation of fossilized shorebird trackways.
期刊介绍:
PALAIOS is a monthly journal, founded in 1986, dedicated to emphasizing the impact of life on Earth''s history as recorded in the paleontological and sedimentological records. PALAIOS disseminates information to an international spectrum of geologists and biologists interested in a broad range of topics, including, but not limited to, biogeochemistry, ichnology, paleoclimatology, paleoecology, paleoceanography, sedimentology, stratigraphy, geomicrobiology, paleobiogeochemistry, and astrobiology.
PALAIOS publishes original papers that emphasize using paleontology to answer important geological and biological questions that further our understanding of Earth history. Accordingly, manuscripts whose subject matter and conclusions have broader geologic implications are much more likely to be selected for publication. Given that the purpose of PALAIOS is to generate enthusiasm for paleontology among a broad spectrum of readers, the editors request the following: titles that generate immediate interest; abstracts that emphasize important conclusions; illustrations of professional caliber used in place of words; and lively, yet scholarly, text.