Restriction of toral eigenfunctions to totally geodesic submanifolds

IF 1.9 1区 数学 Q1 MATHEMATICS
Xiaoqi Huang, Cheng Zhang
{"title":"Restriction of toral eigenfunctions to totally geodesic submanifolds","authors":"Xiaoqi Huang, Cheng Zhang","doi":"10.2140/apde.2021.14.861","DOIUrl":null,"url":null,"abstract":"We estimate the $L^2$ norm of the restriction to a totally geodesic submanifold of the eigenfunctions of the Laplace-Beltrami operator on the standard flat torus $\\mathbb{T}^d$, $d\\ge2$. We reduce getting correct bounds to counting lattice points in the intersection of some $\\nu$-transverse bands on the sphere. Moreover, we prove the correct bounds for rational totally geodesic submanifolds of arbitrary codimension. In particular, we verify the conjecture of Bourgain-Rudnick on $L^2$-restriction estimates for rational hyperplanes. On $\\mathbb{T}^2$, we prove the uniform $L^2$ restriction bounds for closed geodesics. On $\\mathbb{T}^3$, we obtain explicit $L^2$ restriction estimates for the totally geodesic submanifolds, which improve the corresponding results by Burq-G\\'erard-Tzvetkov, Hu, Chen-Sogge.","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2019-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2021.14.861","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We estimate the $L^2$ norm of the restriction to a totally geodesic submanifold of the eigenfunctions of the Laplace-Beltrami operator on the standard flat torus $\mathbb{T}^d$, $d\ge2$. We reduce getting correct bounds to counting lattice points in the intersection of some $\nu$-transverse bands on the sphere. Moreover, we prove the correct bounds for rational totally geodesic submanifolds of arbitrary codimension. In particular, we verify the conjecture of Bourgain-Rudnick on $L^2$-restriction estimates for rational hyperplanes. On $\mathbb{T}^2$, we prove the uniform $L^2$ restriction bounds for closed geodesics. On $\mathbb{T}^3$, we obtain explicit $L^2$ restriction estimates for the totally geodesic submanifolds, which improve the corresponding results by Burq-G\'erard-Tzvetkov, Hu, Chen-Sogge.
托拉本征函数对全测地子流形的约束
我们估计了标准平面环面$\mathbb{T}^d$,$d\ge2$上拉普拉斯-贝尔特拉米算子的本征函数的全测地子流形的限制的$L^2$范数。我们将获得正确的边界简化为计算球体上一些$\nu$-横带相交处的格点。此外,我们还证明了任意余维有理全测地子流形的正确界。特别地,我们验证了Bourgain-Rudnick关于有理超平面的$L^2$-限制估计的猜想。在$\mathbb{T}^2$上,我们证明了闭测地线的一致$L^2$限制界。在$\mathbb{T}^3$上,我们得到了全测地子流形的显式$L^2$限制估计,这改进了Burq-G’erard-Tzvetkov,Hu,Chen Sogge的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信