Vijayakumar Vadivelvivek, N. Natarajan, K. Nijandhan, C. Boopathi
{"title":"INVESTIGATION OF MECHANICAL PERFORMANCE OF BORASSUS FLABELLIFER SPROUT FIBER REINFORCED POLYMER COMPOSITES","authors":"Vijayakumar Vadivelvivek, N. Natarajan, K. Nijandhan, C. Boopathi","doi":"10.35812/cellulosechemtechnol.2023.57.58","DOIUrl":null,"url":null,"abstract":"Natural fibers have been extensively used for many decades. This work investigates the suitability of Borassus flabellifer sprout fiber, a new class of fibers, as reinforcement in polymer matrix composites. Borassus flabellifer sprouts are also called palm sprouts. The fibers were extracted by the water retting method and treated with 5% sodium hydroxide (NaOH) to remove the impurities present in the fiber to achieve better bonding with the matrix. Scanning electron microscopic images of raw and alkali treated Borassus sprout fibers were studied. Composite specimens were made with 20, 25, 30 and 35 volume % of treated and untreated palm sprout fibers, respectively, in a polyester matrix by the hand layup technique and by the compression molding technique. Tensile strength, flexural strength, compression strength, impact strength, hardness and water absorption of sample specimens were determined. Experimental results showed that the composite specimens with 35 volume % of treated palm sprout fibers as reinforcement performed better in all aspects. They have 30.34% higher tensile strength, 34.47% higher flexural strength, 3.14% increased compression strength and 15.56% better impact strength and 7.6% less water absorption than the composite plates reinforced with 35% untreated palm sprout fibers. Thus, the composites showed adequate mechanical properties to be considered for specific applications.","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2023.57.58","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
Natural fibers have been extensively used for many decades. This work investigates the suitability of Borassus flabellifer sprout fiber, a new class of fibers, as reinforcement in polymer matrix composites. Borassus flabellifer sprouts are also called palm sprouts. The fibers were extracted by the water retting method and treated with 5% sodium hydroxide (NaOH) to remove the impurities present in the fiber to achieve better bonding with the matrix. Scanning electron microscopic images of raw and alkali treated Borassus sprout fibers were studied. Composite specimens were made with 20, 25, 30 and 35 volume % of treated and untreated palm sprout fibers, respectively, in a polyester matrix by the hand layup technique and by the compression molding technique. Tensile strength, flexural strength, compression strength, impact strength, hardness and water absorption of sample specimens were determined. Experimental results showed that the composite specimens with 35 volume % of treated palm sprout fibers as reinforcement performed better in all aspects. They have 30.34% higher tensile strength, 34.47% higher flexural strength, 3.14% increased compression strength and 15.56% better impact strength and 7.6% less water absorption than the composite plates reinforced with 35% untreated palm sprout fibers. Thus, the composites showed adequate mechanical properties to be considered for specific applications.
期刊介绍:
Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry.
Topics include:
• studies of structure and properties
• biological and industrial development
• analytical methods
• chemical and microbiological modifications
• interactions with other materials