On implementation of some systems of elementary conjunctions in the class of separating contact circuits

IF 0.3 Q4 MATHEMATICS, APPLIED
Elena G. Krasulina
{"title":"On implementation of some systems of elementary conjunctions in the class of separating contact circuits","authors":"Elena G. Krasulina","doi":"10.1515/dma-2023-0003","DOIUrl":null,"url":null,"abstract":"Abstract We show that the system of elementary conjunctions Ωn,2k=K0,…,K2k−1 $ \\Omega_{n,2^k} = {K_0,\\ldots,K_{2^{k} -1}} $ such that each conjunction depends essentially on n variables and corresponds to some codeword of a linear (n, k)-code can be implemented by a separating contact circuit of complexity at most 2k+1 +4k(n − k) − 2. We also show that if a contact (1, 2k)-terminal network is separating and implements the system of elementary conjunctions Ωn,2k $ \\Omega_{n,2^k} $ , then the number of contacts in it is at least 2k+1 − 2.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"33 1","pages":"19 - 29"},"PeriodicalIF":0.3000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2023-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We show that the system of elementary conjunctions Ωn,2k=K0,…,K2k−1 $ \Omega_{n,2^k} = {K_0,\ldots,K_{2^{k} -1}} $ such that each conjunction depends essentially on n variables and corresponds to some codeword of a linear (n, k)-code can be implemented by a separating contact circuit of complexity at most 2k+1 +4k(n − k) − 2. We also show that if a contact (1, 2k)-terminal network is separating and implements the system of elementary conjunctions Ωn,2k $ \Omega_{n,2^k} $ , then the number of contacts in it is at least 2k+1 − 2.
关于分离接触电路类中一些初等连接系统的实现
摘要我们证明了初等连接系统Ωn,2k=K0,…,K2k−1$\Omega_{n,2^k}={k_0,\ldots,k_{2^{k}-1}$使得每个连接本质上依赖于n个变量并对应于线性(n,k)码的某个码字,可以通过复杂度至多为2k+1+4k(n − k) −2。我们还证明了如果一个接触(1,2k)-终端网络分离并实现了初等连接系统Ωn,2k$\Omega_{n,2^k}$,那么其中的接触数至少为2k+1−2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信