Chenran Zhang, Qingsen Bao, Feng-jun Zhang, P. Li, Lei Chen
{"title":"Temporal attention-aware evidential recurrent network for trustworthy prediction of Alzheimer’s disease progression","authors":"Chenran Zhang, Qingsen Bao, Feng-jun Zhang, P. Li, Lei Chen","doi":"10.3233/ida-230220","DOIUrl":null,"url":null,"abstract":"Accurate and reliable prediction of Alzheimer’s disease (AD) progression is crucial for effective interventions and treatment to delay its onset. Recently, deep learning models for AD progression achieve excellent predictive accuracy. However, their predictions lack reliability due to the non-calibration defects, that affects their recognition and acceptance. To address this issue, this paper proposes a temporal attention-aware evidential recurrent network for trustworthy prediction of AD progression. Specifically, evidential recurrent network explicitly models uncertainty of the output and converts it into a reliability measure for trustworthy AD progression prediction. Furthermore, considering that the actual scenario of AD progression prediction frequently relies on historical longitudinal data, we introduce temporal attention into evidential recurrent network, which improves predictive performance. We demonstrate the proposed model on the TADPOLE dataset. For predictive performance, the proposed model achieves mAUC of 0.943 and BCA of 0.881, which is comparable to the SOTA model MinimalRNN. More importantly, the proposed model provides reliability measures of the predicted results through uncertainty estimation and the ECE of the method on the TADPOLE dataset is 0.101, which is much lower than the SOTA model at 0.147, indicating that the proposed model can provide important decision-making support for risk-sensitive prediction of AD progression.","PeriodicalId":50355,"journal":{"name":"Intelligent Data Analysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Data Analysis","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ida-230220","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate and reliable prediction of Alzheimer’s disease (AD) progression is crucial for effective interventions and treatment to delay its onset. Recently, deep learning models for AD progression achieve excellent predictive accuracy. However, their predictions lack reliability due to the non-calibration defects, that affects their recognition and acceptance. To address this issue, this paper proposes a temporal attention-aware evidential recurrent network for trustworthy prediction of AD progression. Specifically, evidential recurrent network explicitly models uncertainty of the output and converts it into a reliability measure for trustworthy AD progression prediction. Furthermore, considering that the actual scenario of AD progression prediction frequently relies on historical longitudinal data, we introduce temporal attention into evidential recurrent network, which improves predictive performance. We demonstrate the proposed model on the TADPOLE dataset. For predictive performance, the proposed model achieves mAUC of 0.943 and BCA of 0.881, which is comparable to the SOTA model MinimalRNN. More importantly, the proposed model provides reliability measures of the predicted results through uncertainty estimation and the ECE of the method on the TADPOLE dataset is 0.101, which is much lower than the SOTA model at 0.147, indicating that the proposed model can provide important decision-making support for risk-sensitive prediction of AD progression.
期刊介绍:
Intelligent Data Analysis provides a forum for the examination of issues related to the research and applications of Artificial Intelligence techniques in data analysis across a variety of disciplines. These techniques include (but are not limited to): all areas of data visualization, data pre-processing (fusion, editing, transformation, filtering, sampling), data engineering, database mining techniques, tools and applications, use of domain knowledge in data analysis, big data applications, evolutionary algorithms, machine learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge filtering, and post-processing. In particular, papers are preferred that discuss development of new AI related data analysis architectures, methodologies, and techniques and their applications to various domains.