Neilan's divergence‐free finite elements for Stokes equations on tetrahedral grids

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shangyou Zhang
{"title":"Neilan's divergence‐free finite elements for Stokes equations on tetrahedral grids","authors":"Shangyou Zhang","doi":"10.1002/num.23055","DOIUrl":null,"url":null,"abstract":"The Neilan Pk$$ {P}_k $$ ‐ Pk−1$$ {P}_{k-1} $$ divergence‐free finite element is stable on any tetrahedral grid, where the piece‐wise Pk$$ {P}_k $$ polynomial velocity is C0$$ {C}^0 $$ on the grid, C1$$ {C}^1 $$ on edges and C2$$ {C}^2 $$ at vertices, and the piece‐wise Pk−1$$ {P}_{k-1} $$ polynomial pressure is C0$$ {C}^0 $$ on edges and C1$$ {C}^1 $$ at vertices. However the method does not work if the exact pressure solution does not vanish on all domain edges, because of the excessive continuity requirements. We extend the Neilan element by removing the extra requirements at domain boundary edges. That is, if a vertex is on a domain boundary edge and if an edge has one endpoint on a domain boundary edge, the velocity is only C0$$ {C}^0 $$ at the vertex and on the edge, respectively, and the pressure is totally discontinuous there. Under the condition that no tetrahedron in the grid has more than one face‐triangle on the domain boundary, we prove that the extended finite element is stable, and consequently produces solutions of optimal order convergence for all Stokes problems. A numerical example is given, confirming the theory.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

The Neilan Pk$$ {P}_k $$ ‐ Pk−1$$ {P}_{k-1} $$ divergence‐free finite element is stable on any tetrahedral grid, where the piece‐wise Pk$$ {P}_k $$ polynomial velocity is C0$$ {C}^0 $$ on the grid, C1$$ {C}^1 $$ on edges and C2$$ {C}^2 $$ at vertices, and the piece‐wise Pk−1$$ {P}_{k-1} $$ polynomial pressure is C0$$ {C}^0 $$ on edges and C1$$ {C}^1 $$ at vertices. However the method does not work if the exact pressure solution does not vanish on all domain edges, because of the excessive continuity requirements. We extend the Neilan element by removing the extra requirements at domain boundary edges. That is, if a vertex is on a domain boundary edge and if an edge has one endpoint on a domain boundary edge, the velocity is only C0$$ {C}^0 $$ at the vertex and on the edge, respectively, and the pressure is totally discontinuous there. Under the condition that no tetrahedron in the grid has more than one face‐triangle on the domain boundary, we prove that the extended finite element is stable, and consequently produces solutions of optimal order convergence for all Stokes problems. A numerical example is given, confirming the theory.
四面体网格上Stokes方程的Neilan无发散有限元
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信