On transfinite diameters in $\mathbb{C}^{d}$ for generalized notions of degree

Pub Date : 2021-08-31 DOI:10.7146/math.scand.a-126053
N. Levenberg, F. Wielonsky
{"title":"On transfinite diameters in $\\mathbb{C}^{d}$ for generalized notions of degree","authors":"N. Levenberg, F. Wielonsky","doi":"10.7146/math.scand.a-126053","DOIUrl":null,"url":null,"abstract":"We give a general formula for the $C$-transfinite diameter $\\delta_C(K)$ of a compact set $K\\subset \\mathbb{C}^2$ which is a product of univariate compacta where $C\\subset (\\mathbb{R}^+)^2$ is a convex body. Along the way we prove a Rumely type formula relating $\\delta_C(K)$ and the $C$-Robin function $\\rho_{V_{C,K}}$ of the $C$-extremal plurisubharmonic function $V_{C,K}$ for $C \\subset (\\mathbb{R}^+)^2$ a triangle $T_{a,b}$ with vertices $(0,0)$, $(b,0)$, $(0,a)$. Finally, we show how the definition of $\\delta_C(K)$ can be extended to include many nonconvex bodies $C\\subset \\mathbb{R}^d$ for $d$-circled sets $K\\subset \\mathbb{C}^d$, and we prove an integral formula for $\\delta_C(K)$ which we use to compute a formula for $\\delta_C(\\mathbb{B})$ where $\\mathbb{B}$ is the Euclidean unit ball in $\\mathbb{C}^2$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-126053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give a general formula for the $C$-transfinite diameter $\delta_C(K)$ of a compact set $K\subset \mathbb{C}^2$ which is a product of univariate compacta where $C\subset (\mathbb{R}^+)^2$ is a convex body. Along the way we prove a Rumely type formula relating $\delta_C(K)$ and the $C$-Robin function $\rho_{V_{C,K}}$ of the $C$-extremal plurisubharmonic function $V_{C,K}$ for $C \subset (\mathbb{R}^+)^2$ a triangle $T_{a,b}$ with vertices $(0,0)$, $(b,0)$, $(0,a)$. Finally, we show how the definition of $\delta_C(K)$ can be extended to include many nonconvex bodies $C\subset \mathbb{R}^d$ for $d$-circled sets $K\subset \mathbb{C}^d$, and we prove an integral formula for $\delta_C(K)$ which we use to compute a formula for $\delta_C(\mathbb{B})$ where $\mathbb{B}$ is the Euclidean unit ball in $\mathbb{C}^2$.
分享
查看原文
关于广义度概念在$\mathbb{C}^{d}$中的超限直径
我们给出了紧致集$K\subet \mathbb{C}^2$的$C$-超限直径$\delta_C(K)$的一个通式,该紧致集是单变量紧致集的乘积,其中$C\subet(\mathbb{R}^+)^2$是凸体。在此过程中,我们证明了一个Rumely型公式,它涉及$\delta_C(K)$和顶点为$(0,0)$、$(b,0)$和$(0,a)$的三角形$T_。最后,我们展示了$\data_C(K)$的定义如何被扩展到包括$d$的带圆圈集$K\subet\mathbb{C}^d$的许多非凸体$C\subet\athbb{R}^d$,并且我们证明了$\deta_C(K)$的积分公式,我们用它来计算$\data_C(\mathbb{B})$的公式,其中$\mathbb}B}$是$\mathbb{C}^2$中的欧几里得单位球。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信