Dongfei Zheng, Dejun Kong, W. Liang, Pengjun Wang, Qiang Fu, Weiwei Chen, S. Dai, Jun Li, T. Dai, Jianyi Yang
{"title":"Non-volatile flexible-grid wavelength-selective switch using subwavelength-grating-Ge2Sb2Te5-assisted silicon microring resonators","authors":"Dongfei Zheng, Dejun Kong, W. Liang, Pengjun Wang, Qiang Fu, Weiwei Chen, S. Dai, Jun Li, T. Dai, Jianyi Yang","doi":"10.1117/1.JNP.17.036008","DOIUrl":null,"url":null,"abstract":"Abstract. A non-volatile flexible-grid wavelength-selective switch (NVFGWSS) based on subwavelength-grating-Ge2Sb2Te5 (GST)-assisted silicon microring resonators (MRRs) is proposed. By controlling the state of the subwavelength grating GST and the phase shifter, the transmission spectra of the designed subwavelength-grating-GST-assisted silicon MRRs are combined, and thus tunable bandwidths (BWs) are generated as required. A comprehensive analysis of the presented subwavelength-grating-GST-assisted silicon MRRs and the corresponding NVFGWSS is given. Numerical simulations reveal that, for the designed module comprising a subwavelength-grating-GST-assisted silicon MMR and an ellipse-based crossing waveguide, its maximum crosstalk (CT) and insertion loss are −18.08 and 0.50 dB, respectively. For the designed NVFGWSS, as the channel spacing is 0.8 nm, the in-band ripple and CT are <0.895 and −13.006 dB, respectively, and the 3-dB BW changes from 0.51 to 3.2 nm.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.17.036008","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. A non-volatile flexible-grid wavelength-selective switch (NVFGWSS) based on subwavelength-grating-Ge2Sb2Te5 (GST)-assisted silicon microring resonators (MRRs) is proposed. By controlling the state of the subwavelength grating GST and the phase shifter, the transmission spectra of the designed subwavelength-grating-GST-assisted silicon MRRs are combined, and thus tunable bandwidths (BWs) are generated as required. A comprehensive analysis of the presented subwavelength-grating-GST-assisted silicon MRRs and the corresponding NVFGWSS is given. Numerical simulations reveal that, for the designed module comprising a subwavelength-grating-GST-assisted silicon MMR and an ellipse-based crossing waveguide, its maximum crosstalk (CT) and insertion loss are −18.08 and 0.50 dB, respectively. For the designed NVFGWSS, as the channel spacing is 0.8 nm, the in-band ripple and CT are <0.895 and −13.006 dB, respectively, and the 3-dB BW changes from 0.51 to 3.2 nm.
期刊介绍:
The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.