{"title":"Self-organisation migration technique for enhancing the permutation coded genetic algorithm","authors":"K. Dinesh, Rajakumar R, R. Subramanian","doi":"10.1504/IJAMS.2021.10035828","DOIUrl":null,"url":null,"abstract":"Genetic algorithm (GA) is well-known optimisation algorithm for solving various kinds of the optimisation problems. GA is based on the evolutionary principles and effectively solves the large-scale problem. In addition, it incorporates the variety of hybrid techniques to achieve the best performance in complex problems. However, self-organisation is one of the popular model, which acquire global order from the local interaction among the individuals. The combined version of self-organisation and genetic algorithm are adopted to improve the performance in attaining the convergence. This paper proposes a bi-directional self-organisation migration technique for improving the genetic algorithm which achieves the convergence and well-balanced diversity in the population. The experimentation is conducted on the standard test-bed of travelling salesman problem and instances are obtained from TSPLIB. Thus, the proposed algorithm has shown its dominance with the existing classical GA in terms of various parameter metrics.","PeriodicalId":38716,"journal":{"name":"International Journal of Applied Management Science","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Management Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAMS.2021.10035828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 1
Abstract
Genetic algorithm (GA) is well-known optimisation algorithm for solving various kinds of the optimisation problems. GA is based on the evolutionary principles and effectively solves the large-scale problem. In addition, it incorporates the variety of hybrid techniques to achieve the best performance in complex problems. However, self-organisation is one of the popular model, which acquire global order from the local interaction among the individuals. The combined version of self-organisation and genetic algorithm are adopted to improve the performance in attaining the convergence. This paper proposes a bi-directional self-organisation migration technique for improving the genetic algorithm which achieves the convergence and well-balanced diversity in the population. The experimentation is conducted on the standard test-bed of travelling salesman problem and instances are obtained from TSPLIB. Thus, the proposed algorithm has shown its dominance with the existing classical GA in terms of various parameter metrics.