Quantum Langlands dualities of boundary conditions, $D$-modules, and conformal blocks

IF 1.2 3区 数学 Q1 MATHEMATICS
E. Frenkel, D. Gaiotto
{"title":"Quantum Langlands dualities of boundary conditions, $D$-modules, and conformal blocks","authors":"E. Frenkel, D. Gaiotto","doi":"10.4310/cntp.2020.v14.n2.a1","DOIUrl":null,"url":null,"abstract":"We review and extend the vertex algebra framework linking gauge theory constructions and a quantum deformation of the Geometric Langlands Program. The relevant vertex algebras are associated to junctions of two boundary conditions in a 4d gauge theory and can be constructed from the basic ones by following certain standard procedures. Conformal blocks of modules over these vertex algebras give rise to twisted D-modules on the moduli stacks of G-bundles on Riemann surfaces which have applications to the Langlands Program. In particular, we construct a series of vertex algebras for every simple Lie group G which we expect to yield D-module kernels of various quantum Geometric Langlands dualities. We pay particular attention to the full duality group of gauge theory, which enables us to extend the standard qGL duality to a larger duality groupoid. We also discuss various subtleties related to the spin and gerbe structures and present a detailed analysis for the U(1) and SU(2) gauge theories.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2020.v14.n2.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 43

Abstract

We review and extend the vertex algebra framework linking gauge theory constructions and a quantum deformation of the Geometric Langlands Program. The relevant vertex algebras are associated to junctions of two boundary conditions in a 4d gauge theory and can be constructed from the basic ones by following certain standard procedures. Conformal blocks of modules over these vertex algebras give rise to twisted D-modules on the moduli stacks of G-bundles on Riemann surfaces which have applications to the Langlands Program. In particular, we construct a series of vertex algebras for every simple Lie group G which we expect to yield D-module kernels of various quantum Geometric Langlands dualities. We pay particular attention to the full duality group of gauge theory, which enables us to extend the standard qGL duality to a larger duality groupoid. We also discuss various subtleties related to the spin and gerbe structures and present a detailed analysis for the U(1) and SU(2) gauge theories.
边界条件的量子Langlands对偶、$D$-模和共形块
我们回顾并扩展了连接规范理论结构和几何Langlands程序的量子变形的顶点代数框架。在4d规范理论中,相关的顶点代数与两个边界条件的结点相关联,并且可以通过遵循某些标准程序由基本条件构造。这些顶点代数上的模的保形块在黎曼曲面上的G-丛的模栈上产生了扭曲的D-模,这在Langlands程序中有应用。特别地,我们为每个单李群G构造了一系列顶点代数,我们期望它产生各种量子几何Langlands对偶的D模核。我们特别注意规范理论的全对偶群,它使我们能够将标准qGL对偶扩展到一个更大的对偶群胚。我们还讨论了与自旋和gerbe结构有关的各种微妙之处,并对U(1)和SU(2)规范理论进行了详细的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信