{"title":"Quantum Langlands dualities of boundary conditions, $D$-modules, and conformal blocks","authors":"E. Frenkel, D. Gaiotto","doi":"10.4310/cntp.2020.v14.n2.a1","DOIUrl":null,"url":null,"abstract":"We review and extend the vertex algebra framework linking gauge theory constructions and a quantum deformation of the Geometric Langlands Program. The relevant vertex algebras are associated to junctions of two boundary conditions in a 4d gauge theory and can be constructed from the basic ones by following certain standard procedures. Conformal blocks of modules over these vertex algebras give rise to twisted D-modules on the moduli stacks of G-bundles on Riemann surfaces which have applications to the Langlands Program. In particular, we construct a series of vertex algebras for every simple Lie group G which we expect to yield D-module kernels of various quantum Geometric Langlands dualities. We pay particular attention to the full duality group of gauge theory, which enables us to extend the standard qGL duality to a larger duality groupoid. We also discuss various subtleties related to the spin and gerbe structures and present a detailed analysis for the U(1) and SU(2) gauge theories.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2020.v14.n2.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 43
Abstract
We review and extend the vertex algebra framework linking gauge theory constructions and a quantum deformation of the Geometric Langlands Program. The relevant vertex algebras are associated to junctions of two boundary conditions in a 4d gauge theory and can be constructed from the basic ones by following certain standard procedures. Conformal blocks of modules over these vertex algebras give rise to twisted D-modules on the moduli stacks of G-bundles on Riemann surfaces which have applications to the Langlands Program. In particular, we construct a series of vertex algebras for every simple Lie group G which we expect to yield D-module kernels of various quantum Geometric Langlands dualities. We pay particular attention to the full duality group of gauge theory, which enables us to extend the standard qGL duality to a larger duality groupoid. We also discuss various subtleties related to the spin and gerbe structures and present a detailed analysis for the U(1) and SU(2) gauge theories.
期刊介绍:
Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.