{"title":"Surface Urban Heat Island In Moscow During The COID-19 Pandemic Lockdown In 2020","authors":"M. A. Lokoshchenko, E. A. Enukova","doi":"10.24057/2071-9388-2021-116","DOIUrl":null,"url":null,"abstract":"The influence of the COronaVIrus Disease 2019 (COVID-19) pandemic lockdown (the period of strict quarantine measures) in the spring of 2020 on the ‘Surface Urban Heat Island’ (SUHI) geographical phenomenon in Moscow has been studied. For this purpose, we used the measurements of the surface temperature TS made by Moderate Resolution Imaging Spectroradiometer (MODIS) radiometer installed on Terra and Aqua satellites. As a result, TS during the 2020 lockdown, both in the city and surrounding rural zone, was found lower than at the same calendar time in the previous 20 years due to the relatively cold spring. The SUHI intensity as the difference between TS inside Moscow and the surrounding rural zone around it during the lockdown was also lower than usual (on average in the previous 20 years), but this decrease is relatively small and nonsignificant. The Normalized Difference Vegetation Index (NDVI) in Moscow and Moscow region during the lockdown was close to its usual values, but the leaf area index (LAI) was significantly lower than its average values in the previous 20 years. Thus, the weakening of the SUHI during the lockdown in 2020 was caused mostly by lower heat loss due to transpiration in the rural zone. This was associated with the slowdown in vegetation development as a result of the cold spring. Besides, an additional possible reason was the reduction of human activity due to the collapse of many anthropogenic heat sources in the city. According to long-term MODIS data, the SUHI intensity in Moscow and the surface temperature in Moscow region, as well as the NDVI and LAI values, do not demonstrate statistically significant long-term trends in the spring season over the past 21 years, despite climate changes. In spring, during faster snow melting in cities, when it still persists in the rural zone, the SUHI intensity can be record high (up to 8 ºC).","PeriodicalId":37517,"journal":{"name":"Geography, Environment, Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography, Environment, Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24057/2071-9388-2021-116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1
Abstract
The influence of the COronaVIrus Disease 2019 (COVID-19) pandemic lockdown (the period of strict quarantine measures) in the spring of 2020 on the ‘Surface Urban Heat Island’ (SUHI) geographical phenomenon in Moscow has been studied. For this purpose, we used the measurements of the surface temperature TS made by Moderate Resolution Imaging Spectroradiometer (MODIS) radiometer installed on Terra and Aqua satellites. As a result, TS during the 2020 lockdown, both in the city and surrounding rural zone, was found lower than at the same calendar time in the previous 20 years due to the relatively cold spring. The SUHI intensity as the difference between TS inside Moscow and the surrounding rural zone around it during the lockdown was also lower than usual (on average in the previous 20 years), but this decrease is relatively small and nonsignificant. The Normalized Difference Vegetation Index (NDVI) in Moscow and Moscow region during the lockdown was close to its usual values, but the leaf area index (LAI) was significantly lower than its average values in the previous 20 years. Thus, the weakening of the SUHI during the lockdown in 2020 was caused mostly by lower heat loss due to transpiration in the rural zone. This was associated with the slowdown in vegetation development as a result of the cold spring. Besides, an additional possible reason was the reduction of human activity due to the collapse of many anthropogenic heat sources in the city. According to long-term MODIS data, the SUHI intensity in Moscow and the surface temperature in Moscow region, as well as the NDVI and LAI values, do not demonstrate statistically significant long-term trends in the spring season over the past 21 years, despite climate changes. In spring, during faster snow melting in cities, when it still persists in the rural zone, the SUHI intensity can be record high (up to 8 ºC).
期刊介绍:
Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is founded by the Faculty of Geography of Lomonosov Moscow State University, The Russian Geographical Society and by the Institute of Geography of RAS. It is the official journal of Russian Geographical Society, and a fully open access journal. Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” publishes original, innovative, interdisciplinary and timely research letter articles and concise reviews on studies of the Earth and its environment scientific field. This goal covers a broad spectrum of scientific research areas (physical-, social-, economic-, cultural geography, environmental sciences and sustainable development) and also considers contemporary and widely used research methods, such as geoinformatics, cartography, remote sensing (including from space), geophysics, geochemistry, etc. “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is the only original English-language journal in the field of geography and environmental sciences published in Russia. It is supposed to be an outlet from the Russian-speaking countries to Europe and an inlet from Europe to the Russian-speaking countries regarding environmental and Earth sciences, geography and sustainability. The main sections of the journal are the theory of geography and ecology, the theory of sustainable development, use of natural resources, natural resources assessment, global and regional changes of environment and climate, social-economical geography, ecological regional planning, sustainable regional development, applied aspects of geography and ecology, geoinformatics and ecological cartography, ecological problems of oil and gas sector, nature conservations, health and environment, and education for sustainable development. Articles are freely available to both subscribers and the wider public with permitted reuse.