{"title":"The category of EQ-algebras","authors":"R. Borzooei, N. Akhlaghinia, M. Kologani, X. Xin","doi":"10.18778/0138-0680.2021.01","DOIUrl":null,"url":null,"abstract":"\n \n \nEQ-algebras were introduced by Nova ́k in [15] as an algebraic structure of truth values for fuzzy type theory (FFT). In this paper, we studied the category of EQ-algebras and showed that it is complete, but it is not cocomplete, in general. We proved that multiplicatively relative EQ-algebras have coequlizers and we calculate coprodut and pushout in a special case. Also, we construct a free EQ-algebra on a singleton. \n \n \n","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.2021.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 3
Abstract
EQ-algebras were introduced by Nova ́k in [15] as an algebraic structure of truth values for fuzzy type theory (FFT). In this paper, we studied the category of EQ-algebras and showed that it is complete, but it is not cocomplete, in general. We proved that multiplicatively relative EQ-algebras have coequlizers and we calculate coprodut and pushout in a special case. Also, we construct a free EQ-algebra on a singleton.