The category of EQ-algebras

Q2 Arts and Humanities
R. Borzooei, N. Akhlaghinia, M. Kologani, X. Xin
{"title":"The category of EQ-algebras","authors":"R. Borzooei, N. Akhlaghinia, M. Kologani, X. Xin","doi":"10.18778/0138-0680.2021.01","DOIUrl":null,"url":null,"abstract":"\n \n \nEQ-algebras were introduced by Nova ́k in [15] as an algebraic structure of truth values for fuzzy type theory (FFT). In this paper, we studied the category of EQ-algebras and showed that it is complete, but it is not cocomplete, in general. We proved that multiplicatively relative EQ-algebras have coequlizers and we calculate coprodut and pushout in a special case. Also, we construct a free EQ-algebra on a singleton. \n \n \n","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.2021.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 3

Abstract

EQ-algebras were introduced by Nova ́k in [15] as an algebraic structure of truth values for fuzzy type theory (FFT). In this paper, we studied the category of EQ-algebras and showed that it is complete, but it is not cocomplete, in general. We proved that multiplicatively relative EQ-algebras have coequlizers and we calculate coprodut and pushout in a special case. Also, we construct a free EQ-algebra on a singleton.
EQ-代数的范畴
Novák在[15]中引入了EQ代数,作为模糊类型理论(FFT)的真值的代数结构。在本文中,我们研究了EQ-代数的范畴,并证明了它是完备的,但一般来说它不是共完备的。我们证明了乘法相对EQ代数具有共量化器,并在特殊情况下计算了共乘积和推出。此外,我们在单例上构造了一个自由EQ代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of the Section of Logic
Bulletin of the Section of Logic Arts and Humanities-Philosophy
CiteScore
0.90
自引率
0.00%
发文量
15
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信