PREDIKSI KELULUSAN MAHASISWA PROGRAM STUDI MATEMATIKA UNIVERSITAS UDAYANA MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK

M. Rizki, Nur Ihsan, G. Gandhiadi, Luh Putu, Ida Harini
{"title":"PREDIKSI KELULUSAN MAHASISWA PROGRAM STUDI MATEMATIKA UNIVERSITAS UDAYANA MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK","authors":"M. Rizki, Nur Ihsan, G. Gandhiadi, Luh Putu, Ida Harini","doi":"10.24843/mtk.2023.v12.i03.p425","DOIUrl":null,"url":null,"abstract":"Based on the rules of the BAN-PT Study Program Accreditation Instrument 4.0 (IAPS 4.0), one of the study program accreditation assessment indicators is the percentage of students who graduate on time. The percentage of Udayana University Mathematics Study Program students who graduated on time during the graduation period from 2002 to 2019 was 52.5%. It can be seen that many students fail to complete their studies on time, which has an impact on the study program accreditation assessment. Based on these problems, this study aims to help academics increase the percentage of Udayana University Mathematics Study Program graduates by predicting the graduation of mathematics study program students using the backpropagation neural network method. This study uses data on alumni of students of the 2002-2017 mathematics study program. With the BNN 5-3-1 architecture, the predicted results of graduation for students of the Udayana University mathematics study program are 73%.","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/mtk.2023.v12.i03.p425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the rules of the BAN-PT Study Program Accreditation Instrument 4.0 (IAPS 4.0), one of the study program accreditation assessment indicators is the percentage of students who graduate on time. The percentage of Udayana University Mathematics Study Program students who graduated on time during the graduation period from 2002 to 2019 was 52.5%. It can be seen that many students fail to complete their studies on time, which has an impact on the study program accreditation assessment. Based on these problems, this study aims to help academics increase the percentage of Udayana University Mathematics Study Program graduates by predicting the graduation of mathematics study program students using the backpropagation neural network method. This study uses data on alumni of students of the 2002-2017 mathematics study program. With the BNN 5-3-1 architecture, the predicted results of graduation for students of the Udayana University mathematics study program are 73%.
基于神经网络反向传播的高校材料学习计划排异预测
根据BAN-PT学习项目认证工具4.0(IAPS 4.0)的规则,学习项目认证评估指标之一是按时毕业的学生百分比。乌达亚纳大学数学学习项目学生在2002年至2019年毕业期间按时毕业的比例为52.5%。可以看出,许多学生未能按时完成学业,这对学习项目认证评估产生了影响。基于这些问题,本研究旨在通过使用反向传播神经网络方法预测数学学习项目学生的毕业率,帮助学术界提高乌达亚纳大学数学学习项目毕业生的比例。这项研究使用了2002-2017数学学习项目学生的校友数据。使用BNN 5-3-1架构,乌达亚纳大学数学学习项目学生的毕业预测结果为73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
34
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信