Souvick Das, Novarun Deb, N. Chaki, Agostino Cortesi
{"title":"Minimising conflicts among run‐time non‐functional requirements within DevOps","authors":"Souvick Das, Novarun Deb, N. Chaki, Agostino Cortesi","doi":"10.1002/sys.21715","DOIUrl":null,"url":null,"abstract":"Significant contributions in the existing literature highlight the potential of softgoal interdependency graphs towards analyzing conflicting non‐functional requirements (NFRs). However, such analysis is often at a very abstract level and does not quite consider the run‐time performance statistics of NFR operationalizations. On the contrary, some initial empirical evaluations demonstrate the importance of the run‐time statistics. In this paper, a framework is proposed that uses these statistics and combines the same with NFR priorities for computing the impact of NFR conflicts. The proposed framework is capable of identifying the best possible set of NFR operationalizations that minimizes the impact of conflicting NFRs. A detailed space analysis of the solution framework helps proving the efficiency of the proposed pruning mechanism in terms of better space management. Furthermore, a Dynamic Bayesian Network (DBN) ‐ based system behavioral model that works on top of the proposed framework, is defined and analyzed. An appropriate tool prototype for the framework is implemented as part of this research.","PeriodicalId":54439,"journal":{"name":"Systems Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/sys.21715","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Significant contributions in the existing literature highlight the potential of softgoal interdependency graphs towards analyzing conflicting non‐functional requirements (NFRs). However, such analysis is often at a very abstract level and does not quite consider the run‐time performance statistics of NFR operationalizations. On the contrary, some initial empirical evaluations demonstrate the importance of the run‐time statistics. In this paper, a framework is proposed that uses these statistics and combines the same with NFR priorities for computing the impact of NFR conflicts. The proposed framework is capable of identifying the best possible set of NFR operationalizations that minimizes the impact of conflicting NFRs. A detailed space analysis of the solution framework helps proving the efficiency of the proposed pruning mechanism in terms of better space management. Furthermore, a Dynamic Bayesian Network (DBN) ‐ based system behavioral model that works on top of the proposed framework, is defined and analyzed. An appropriate tool prototype for the framework is implemented as part of this research.
期刊介绍:
Systems Engineering is a discipline whose responsibility it is to create and operate technologically enabled systems that satisfy stakeholder needs throughout their life cycle. Systems engineers reduce ambiguity by clearly defining stakeholder needs and customer requirements, they focus creativity by developing a system’s architecture and design and they manage the system’s complexity over time. Considerations taken into account by systems engineers include, among others, quality, cost and schedule, risk and opportunity under uncertainty, manufacturing and realization, performance and safety during operations, training and support, as well as disposal and recycling at the end of life. The journal welcomes original submissions in the field of Systems Engineering as defined above, but also encourages contributions that take an even broader perspective including the design and operation of systems-of-systems, the application of Systems Engineering to enterprises and complex socio-technical systems, the identification, selection and development of systems engineers as well as the evolution of systems and systems-of-systems over their entire lifecycle.
Systems Engineering integrates all the disciplines and specialty groups into a coordinated team effort forming a structured development process that proceeds from concept to realization to operation. Increasingly important topics in Systems Engineering include the role of executable languages and models of systems, the concurrent use of physical and virtual prototyping, as well as the deployment of agile processes. Systems Engineering considers both the business and the technical needs of all stakeholders with the goal of providing a quality product that meets the user needs. Systems Engineering may be applied not only to products and services in the private sector but also to public infrastructures and socio-technical systems whose precise boundaries are often challenging to define.