W 2,p a priori estimates for nonvariational operators: the sharp maximal function technique

IF 0.2 Q4 MATHEMATICS
M. Bramanti
{"title":"W 2,p a priori estimates for nonvariational operators: the sharp maximal function technique","authors":"M. Bramanti","doi":"10.6092/issn.2240-2829/8939","DOIUrl":null,"url":null,"abstract":"We consider a nonvariational degenerate elliptic operator, structured on a system of left invariant, 1-homogeneous, Hormander vector fields on a Carnot group, where the coefficient matrix is symmetric, uniformly positive on a bounded domain and the coefficients are locally VMO. We discuss a new proof (given in [BT] and also based on results in [BF]) of the interior estimates in Sobolev spaces, first proved in [BB-To]. The present proof extends to this context Krylov' technique, introduced in [K1], consisting in estimating the sharp maximal function of second order derivatives.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"9 1","pages":"1-19"},"PeriodicalIF":0.2000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/issn.2240-2829/8939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a nonvariational degenerate elliptic operator, structured on a system of left invariant, 1-homogeneous, Hormander vector fields on a Carnot group, where the coefficient matrix is symmetric, uniformly positive on a bounded domain and the coefficients are locally VMO. We discuss a new proof (given in [BT] and also based on results in [BF]) of the interior estimates in Sobolev spaces, first proved in [BB-To]. The present proof extends to this context Krylov' technique, introduced in [K1], consisting in estimating the sharp maximal function of second order derivatives.
非变量算子的W2,p先验估计:sharp极大函数技术
我们考虑一个非变退化椭圆算子,它构造在卡诺群上的左不变、1-齐次Hormander向量场系统上,其中系数矩阵在有界域上是对称的、一致正的,并且系数是局部VMO。我们讨论了Sobolev空间中内部估计的一个新的证明(在[BT]中给出,也基于[BF]中的结果),该证明首次在[BB-To]中证明。本证明扩展到了这一上下文中,Krylov’技术在[K1]中引入,包括估计二阶导数的尖锐极大函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信