Equivariant formality of isotropic torus actions

IF 0.7 4区 数学 Q2 MATHEMATICS
Jeffrey D. Carlson
{"title":"Equivariant formality of isotropic torus actions","authors":"Jeffrey D. Carlson","doi":"10.1007/s40062-018-0207-5","DOIUrl":null,"url":null,"abstract":"<p>Considering the potential equivariant formality of the left action of a connected Lie group <i>K</i> on the homogeneous space <i>G</i>?/?<i>K</i>, we arrive through a sequence of reductions at the case <i>G</i> is compact and simply-connected and <i>K</i> is a torus. We then classify all pairs (<i>G</i>,?<i>S</i>) such that <i>G</i> is compact connected Lie and the embedded circular subgroup <i>S</i> acts equivariantly formally on <i>G</i>?/?<i>S</i>. In the process we provide what seems to be the first published proof of the structure (known to Leray and Koszul) of the cohomology rings</p>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"14 1","pages":"199 - 234"},"PeriodicalIF":0.7000,"publicationDate":"2018-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0207-5","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0207-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

Considering the potential equivariant formality of the left action of a connected Lie group K on the homogeneous space G?/?K, we arrive through a sequence of reductions at the case G is compact and simply-connected and K is a torus. We then classify all pairs (G,?S) such that G is compact connected Lie and the embedded circular subgroup S acts equivariantly formally on G?/?S. In the process we provide what seems to be the first published proof of the structure (known to Leray and Koszul) of the cohomology rings

Abstract Image

各向同性环面作用的等变形式
考虑连通李群K在齐次空间G?/?上左作用的潜在等变形式K,我们通过一系列约简得到G是紧化单连通的K是环面。然后,我们对所有对(G,?S)进行分类,使得G是紧连通Lie,并且嵌入的圆子群S等价地作用于G?/?S。在这个过程中,我们提供了似乎是首次发表的关于上同环结构(Leray和Koszul已知)的证明
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信